capitalrep <- read.csv("data/capitalreplication.csv", header=T)

1 Matsumura and Takeuchi (1990) (Section A.1 of the Paper)

1.1 Preparing for variables

capitalrep$K1_N14 <- capitalrep$K1/capitalrep$N14*100
capitalrep$A1_K1 <- capitalrep$A1/capitalrep$K1*100
capitalrep$S1_C1 <- capitalrep$S1/capitalrep$C1*100
capitalrep$U_L <- capitalrep$U/capitalrep$L*100
capitalrep$IN_CP <- (capitalrep$IN/capitalrep$IN[capitalrep$YEAR==2015])/(capitalrep$CP/capitalrep$CP[capitalrep$YEAR==2015])*100
capitalrep$P_N <- capitalrep$P/capitalrep$N
capitalrep$M2029_N <- capitalrep$M2029/capitalrep$N*100
capitalrep$E1_N <- capitalrep$E1/(capitalrep$N*1000)*100

Adjusting the year of the data

matsu <- subset(capitalrep, 1953<=YEAR & YEAR<=1987)

Lag and log-transformation

matsu$S1_C1_LAG <- c(NA,matsu$S1_C1[1:length(matsu$S1_C1)-1])
matsu$LK1_N14 <- log(matsu$K1_N14)
matsu$LA1_K1 <- log(matsu$A1_K1)
matsu$LS1_C1 <- log(matsu$S1_C1)
matsu$LIN_CP <- log(matsu$IN_CP)
matsu$LU_L <- log(matsu$U_L)
matsu$LP_N <- log(matsu$P_N)
matsu$LM2029_N <- log(matsu$M2029_N)
matsu$LE1_N <- log(matsu$E1_N)
matsu$LS1_C1_LAG <- log(matsu$S1_C1_LAG)

1.2 Replication (Table A2)

matsu_ols <- lm(K1_N14~A1_K1+S1_C1+IN_CP+U_L+P_N+M2029_N+E1_N,data=matsu)
matsu_log_ols <- lm(LK1_N14~LA1_K1+LS1_C1+LIN_CP+LU_L+LP_N+LM2029_N+LE1_N,data=matsu)
matsu_lag_ols <- lm(K1_N14~A1_K1+S1_C1_LAG+IN_CP+U_L+P_N+M2029_N+E1_N,data=matsu)
matsu_laglog_ols <- lm(LK1_N14~LA1_K1+LS1_C1_LAG+LIN_CP+LU_L+LP_N+LM2029_N+LE1_N,data=matsu)
library(memisc)
matsu_model <- mtable("(1)"=matsu_ols,"(2)"=matsu_log_ols,"(3)"=matsu_lag_ols,"(4)"=matsu_laglog_ols,coef.style="stat",signif.symbols=c("***"=.01,"**"=.05, "*"=.1),summary.stats=c("adj. R-squared","N"))
print(matsu_model)
## 
## Calls:
## (1): lm(formula = K1_N14 ~ A1_K1 + S1_C1 + IN_CP + U_L + P_N + M2029_N + 
##     E1_N, data = matsu)
## (2): lm(formula = LK1_N14 ~ LA1_K1 + LS1_C1 + LIN_CP + LU_L + LP_N + 
##     LM2029_N + LE1_N, data = matsu)
## (3): lm(formula = K1_N14 ~ A1_K1 + S1_C1_LAG + IN_CP + U_L + P_N + 
##     M2029_N + E1_N, data = matsu)
## (4): lm(formula = LK1_N14 ~ LA1_K1 + LS1_C1_LAG + LIN_CP + LU_L + 
##     LP_N + LM2029_N + LE1_N, data = matsu)
## 
## ==================================================================
##                      (1)         (2)         (3)         (4)      
##                  ----------- ----------- ----------- -----------   
##                     K1_N14     LK1_N14      K1_N14     LK1_N14    
## ------------------------------------------------------------------
##   (Intercept)      -7.068*     -2.771      -6.046      -1.777     
##                   (-1.775)    (-0.505)    (-1.540)    (-0.332)    
##   A1_K1             0.037                   0.043                 
##                    (0.895)                 (1.041)                
##   S1_C1             0.086                                         
##                    (1.169)                                        
##   IN_CP            -0.000                  -0.011                 
##                   (-0.023)                (-0.999)                
##   U_L               0.488***                0.592***              
##                    (5.944)                 (6.585)                
##   P_N               0.158***                0.116**               
##                    (4.285)                 (2.666)                
##   M2029_N           0.371***                0.336***              
##                    (4.863)                 (4.406)                
##   E1_N             -0.290                  -0.296                 
##                   (-1.005)                (-1.032)                
##   LA1_K1                        0.065                  -0.003     
##                                (0.053)                (-0.003)    
##   LS1_C1                        0.000                             
##                                (0.007)                            
##   LIN_CP                       -0.107                  -0.201     
##                               (-0.541)                (-1.008)    
##   LU_L                          0.209***                0.211***  
##                                (5.275)                 (5.433)    
##   LP_N                          0.589***                0.525**   
##                                (2.854)                 (2.544)    
##   LM2029_N                      1.025***                0.962***  
##                                (5.941)                 (5.644)    
##   LE1_N                        -0.216*                 -0.205*    
##                               (-1.943)                (-1.881)    
##   S1_C1_LAG                                -0.101                 
##                                           (-1.271)                
##   LS1_C1_LAG                                           -0.028     
##                                                       (-1.436)    
## ------------------------------------------------------------------
##   adj. R-squared    0.974       0.982       0.972       0.982     
##   N                35          35          34          34         
## ==================================================================
##   Significance: *** = p < 0.01; ** = p < 0.05; * = p < 0.1

Durbin-Watson statistics

library(lmtest)
dwtest(matsu_ols)
## 
##  Durbin-Watson test
## 
## data:  matsu_ols
## DW = 1.4282, p-value = 0.004377
## alternative hypothesis: true autocorrelation is greater than 0
dwtest(matsu_log_ols)
## 
##  Durbin-Watson test
## 
## data:  matsu_log_ols
## DW = 1.5646, p-value = 0.01366
## alternative hypothesis: true autocorrelation is greater than 0
dwtest(matsu_lag_ols)
## 
##  Durbin-Watson test
## 
## data:  matsu_lag_ols
## DW = 1.5337, p-value = 0.01134
## alternative hypothesis: true autocorrelation is greater than 0
dwtest(matsu_laglog_ols)
## 
##  Durbin-Watson test
## 
## data:  matsu_laglog_ols
## DW = 1.6339, p-value = 0.02171
## alternative hypothesis: true autocorrelation is greater than 0

2 Akiba (1993) (Section A.2 of the Paper)

2.1 Preparing for variables

capitalrep$K2_N <- capitalrep$K2/capitalrep$N*100
capitalrep$A2_K2 <- capitalrep$A2/capitalrep$K2*100
capitalrep$C2_A2 <- capitalrep$C2/capitalrep$A2*100
capitalrep$X_C2 <- capitalrep$X/capitalrep$C2*100
capitalrep$G1_N <- capitalrep$G1/capitalrep$N*100
capitalrep$F1_N <- capitalrep$F1/(capitalrep$N*1000)*100
capitalrep$M1524_N <- capitalrep$M1524/capitalrep$N*100
capitalrep$E2_N <- capitalrep$E2/(capitalrep$N*1000)*100
capitalrep$Y1972 <- ifelse(capitalrep$YEAR<1972,0,1) 

Adjusting the year of the data

akiba <- subset(capitalrep, 1960<=YEAR & YEAR<=1986)

Time trend

akiba$TREND=1:nrow(akiba) 

Lag and log-transformation

akiba$K2LAG <- c(NA,akiba$K2[1:length(akiba$K2)-1])
akiba$A2_K2LAG <- (akiba$A2)/(akiba$K2LAG)
akiba$LA2_K2LAG <- log(akiba$A2_K2LAG)

akiba$LK2_N <- log(akiba$K2_N)
akiba$LA2_K2 <- log(akiba$A2_K2)
akiba$LC2_A2 <- log(akiba$C2_A2)
akiba$LU_L <- log(akiba$U_L)
akiba$LW <- log(akiba$W)
akiba$LG1_N <- log(akiba$G1_N)
akiba$LF1_N <- log(akiba$F1_N)
akiba$LM1524_N <- log(akiba$M1524_N)
akiba$LE2_N <- log(akiba$E2_N)
# Ehrlich’s (1975) method to treat the cases where the original values are zero
akiba$X_C2_1 <- ifelse(akiba$X==0,1,akiba$X)/akiba$C2*100 
akiba$LX_C2_1 <- log(akiba$X_C2_1) 

2.2 Replication (Table A3)

akiba_ols <- lm(K2_N~A2_K2+C2_A2+X_C2+U_L+W+G1_N+F1_N+M1524_N+E2_N+Y1972+TREND, data=akiba)
akiba_log_ols <- lm(LK2_N~LA2_K2+LC2_A2+LX_C2_1+LU_L+LW+LG1_N+LF1_N+LM1524_N+LE2_N+Y1972+TREND, data=akiba)
akiba_lag_ols <- lm(K2_N~A2_K2LAG+C2_A2+X_C2+U_L+W+G1_N+F1_N+M1524_N+E2_N+Y1972+TREND, data=akiba)
akiba_laglog_ols <- lm(LK2_N~LA2_K2LAG+LC2_A2+LX_C2_1+LU_L+LW+LG1_N+LF1_N+LM1524_N+LE2_N+Y1972+TREND, data=akiba)
akiba_model <- mtable("(1)"=akiba_ols,"(2)"=akiba_log_ols,"(3)"=akiba_lag_ols,"(4)"=akiba_laglog_ols,coef.style="stat",signif.symbols=c("***"=.01,"**"=.05, "*"=.1),summary.stats=c("adj. R-squared","N"))
print(akiba_model)
## 
## Calls:
## (1): lm(formula = K2_N ~ A2_K2 + C2_A2 + X_C2 + U_L + W + G1_N + F1_N + 
##     M1524_N + E2_N + Y1972 + TREND, data = akiba)
## (2): lm(formula = LK2_N ~ LA2_K2 + LC2_A2 + LX_C2_1 + LU_L + LW + 
##     LG1_N + LF1_N + LM1524_N + LE2_N + Y1972 + TREND, data = akiba)
## (3): lm(formula = K2_N ~ A2_K2LAG + C2_A2 + X_C2 + U_L + W + G1_N + 
##     F1_N + M1524_N + E2_N + Y1972 + TREND, data = akiba)
## (4): lm(formula = LK2_N ~ LA2_K2LAG + LC2_A2 + LX_C2_1 + LU_L + LW + 
##     LG1_N + LF1_N + LM1524_N + LE2_N + Y1972 + TREND, data = akiba)
## 
## ============================================================
##                      (1)       (2)        (3)       (4)     
##                  ---------- --------- ---------- ---------   
##                     K2_N      LK2_N      K2_N      LK2_N    
## ------------------------------------------------------------
##   (Intercept)       1.341     -2.506    -1.403      1.729   
##                    (0.339)   (-0.285)  (-0.856)    (0.959)  
##   A2_K2            -0.011                                   
##                   (-0.363)                                  
##   C2_A2            -0.010**             -0.008              
##                   (-2.571)             (-1.549)             
##   X_C2             -0.042*              -0.031              
##                   (-1.867)             (-1.445)             
##   U_L               0.344**              0.310**            
##                    (2.632)              (2.246)             
##   W                 0.011                0.016              
##                    (0.772)              (1.335)             
##   G1_N             -0.002               -0.004              
##                   (-0.302)             (-0.906)             
##   F1_N              0.114                0.190*             
##                    (1.292)              (1.948)             
##   M1524_N           0.068                0.064              
##                    (1.145)              (1.164)             
##   E2_N              0.231                0.512              
##                    (0.614)              (1.297)             
##   Y1972             0.090      0.020     0.088      0.002   
##                    (0.692)    (0.264)   (0.704)    (0.030)  
##   TREND            -0.045     -0.021    -0.015     -0.010   
##                   (-0.891)   (-0.717)  (-0.321)   (-0.402)  
##   LA2_K2                       0.924                        
##                               (0.454)                       
##   LC2_A2                      -0.214               -0.130   
##                              (-1.649)             (-0.798)  
##   LX_C2_1                     -0.004               -0.002   
##                              (-0.401)             (-0.165)  
##   LU_L                         0.224                0.190   
##                               (1.579)              (1.231)  
##   LW                           0.462                0.536   
##                               (1.039)              (1.491)  
##   LG1_N                       -0.617               -0.773   
##                              (-0.826)             (-1.357)  
##   LF1_N                       -0.115                0.130   
##                              (-0.198)              (0.230)  
##   LM1524_N                     0.704                0.474   
##                               (1.733)              (1.310)  
##   LE2_N                        0.078                0.165   
##                               (0.230)              (0.563)  
##   A2_K2LAG                               0.311              
##                                         (0.844)             
##   LA2_K2LAG                                         0.281   
##                                                    (1.269)  
## ------------------------------------------------------------
##   adj. R-squared    0.979      0.969     0.977      0.970   
##   N                27         27        26         26       
## ============================================================
##   Significance: *** = p < 0.01; ** = p < 0.05; * = p < 0.1

Durbin-Watson statistics

dwtest(akiba_ols)
## 
##  Durbin-Watson test
## 
## data:  akiba_ols
## DW = 1.687, p-value = 0.01055
## alternative hypothesis: true autocorrelation is greater than 0
dwtest(akiba_log_ols)
## 
##  Durbin-Watson test
## 
## data:  akiba_log_ols
## DW = 1.8087, p-value = 0.03568
## alternative hypothesis: true autocorrelation is greater than 0
dwtest(akiba_lag_ols)
## 
##  Durbin-Watson test
## 
## data:  akiba_lag_ols
## DW = 2.068, p-value = 0.09291
## alternative hypothesis: true autocorrelation is greater than 0
dwtest(akiba_laglog_ols)
## 
##  Durbin-Watson test
## 
## data:  akiba_laglog_ols
## DW = 1.7299, p-value = 0.01866
## alternative hypothesis: true autocorrelation is greater than 0

3 Merriman (1988) (Section A.3 of the Paper)

3.1 Preparing for variables

capitalrep$Cm_K2 <- capitalrep$Cm/capitalrep$K2
capitalrep$Gm_N <- capitalrep$Gm/capitalrep$N*100
capitalrep$L_N <- capitalrep$L/(capitalrep$N*10)*100
capitalrep$N2029_N <- capitalrep$N2029/capitalrep$N

Adjusting the year of the data

mer <- subset(capitalrep, 1957<=YEAR & YEAR<=1982)

Log-transformation

mer$LK2_N <- log(mer$K2_N)
mer$LCm_K2 <- log(mer$Cm_K2)
mer$LU_L <- log(mer$U_L)
mer$LGm_N <- log(mer$Gm_N)
mer$LL_N <- log(mer$L_N)
mer$LN2029_N <- log(mer$N2029_N)
mer$LM2029_N <- log(mer$M2029_N)

# Ehrlich’s (1975) method to treat the cases where the original values are zero
mer$X_Cm_1 <- ifelse(mer$X==0,1,mer$X)/mer$Cm 
mer$LX_Cm_1 <- log(mer$X_Cm_1)

Other variables such as time trend

mer$TREND=1:nrow(mer)
mer$Gm_N_LAG <- c(NA,mer$Gm_N[1:length(mer$Gm_N)-1])
mer$DGm_N <- (mer$Gm_N-mer$Gm_N_LAG)/mer$Gm_N_LAG
mer$LDGm_N <- mer$LGm_N-log(mer$Gm_N_LAG)

3.2 Replication (Table A3)

Prais-Winsten’s method

library(prais)
mer_prais1 <- prais_winsten(LK2_N~LCm_K2+LX_Cm_1+LU_L+LGm_N+LL_N+TREND+LN2029_N, data = mer)
mer_prais2 <- prais_winsten(LK2_N~LCm_K2+LX_Cm_1+LU_L+LGm_N+LL_N+LN2029_N, data = mer)
mer_prais3 <- prais_winsten(LK2_N~LCm_K2+LX_Cm_1+LU_L+LDGm_N+LL_N+TREND+LN2029_N, data = mer)

3.2.1 Model (1)

summary(mer_prais1)
## 
## Call:
## prais_winsten(formula = LK2_N ~ LCm_K2 + LX_Cm_1 + LU_L + LGm_N + 
##     LL_N + TREND + LN2029_N, data = mer)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.071401 -0.023727  0.009096  0.024390  0.066940 
## 
## AR(1) coefficient rho after 19 Iterations: 0.461
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)  
## (Intercept) -0.445409   3.238699  -0.138   0.8921  
## LCm_K2      -0.147699   0.112207  -1.316   0.2046  
## LX_Cm_1     -0.016904   0.007193  -2.350   0.0304 *
## LU_L         0.161222   0.098492   1.637   0.1190  
## LGm_N        0.238650   0.422558   0.565   0.5792  
## LL_N        -0.816586   1.425087  -0.573   0.5737  
## TREND       -0.044445   0.029715  -1.496   0.1521  
## LN2029_N     0.148879   0.487281   0.306   0.7635  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.03655 on 18 degrees of freedom
## Multiple R-squared:  0.9613, Adjusted R-squared:  0.9463 
## F-statistic:  63.9 on 7 and 18 DF,  p-value: 2.014e-11
## 
## Durbin-Watson statistic (original): 1.215 
## Durbin-Watson statistic (transformed): 1.463

3.2.2 Model (2)

summary(mer_prais2)
## 
## Call:
## prais_winsten(formula = LK2_N ~ LCm_K2 + LX_Cm_1 + LU_L + LGm_N + 
##     LL_N + LN2029_N, data = mer)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.08077 -0.01980  0.00768  0.01941  0.07410 
## 
## AR(1) coefficient rho after 20 Iterations: 0.3597
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  4.038922   1.022543   3.950 0.000859 ***
## LCm_K2      -0.125769   0.120260  -1.046 0.308772    
## LX_Cm_1     -0.017393   0.007828  -2.222 0.038633 *  
## LU_L         0.075663   0.087912   0.861 0.400152    
## LGm_N       -0.395499   0.029762 -13.289 4.54e-11 ***
## LL_N         0.279917   1.158227   0.242 0.811619    
## LN2029_N     0.763891   0.216576   3.527 0.002252 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.038 on 19 degrees of freedom
## Multiple R-squared:  0.9618, Adjusted R-squared:  0.9497 
## F-statistic: 79.66 on 6 and 19 DF,  p-value: 1.921e-12
## 
## Durbin-Watson statistic (original): 1.352 
## Durbin-Watson statistic (transformed): 1.549

3.2.3 Model (3)

summary(mer_prais3)
## 
## Call:
## prais_winsten(formula = LK2_N ~ LCm_K2 + LX_Cm_1 + LU_L + LDGm_N + 
##     LL_N + TREND + LN2029_N, data = mer)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.047997 -0.014791 -0.001091  0.014248  0.046265 
## 
## AR(1) coefficient rho after 10 Iterations: 0.3231
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -0.101579   0.777864  -0.131   0.8976    
## LCm_K2      -0.196721   0.093693  -2.100   0.0510 .  
## LX_Cm_1     -0.010774   0.005757  -1.871   0.0786 .  
## LU_L         0.076792   0.061695   1.245   0.2301    
## LDGm_N       0.736844   0.244411   3.015   0.0078 ** 
## LL_N        -1.847362   0.883264  -2.092   0.0518 .  
## TREND       -0.027444   0.001812 -15.146 2.65e-11 ***
## LN2029_N     0.219515   0.159862   1.373   0.1875    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.02651 on 17 degrees of freedom
## Multiple R-squared:  0.9838, Adjusted R-squared:  0.9772 
## F-statistic: 147.8 on 7 and 17 DF,  p-value: 5.745e-14
## 
## Durbin-Watson statistic (original): 1.363 
## Durbin-Watson statistic (transformed):  1.62