capital <- read.csv("data/capitalJapan.csv", header=T)
capital <- subset(capital, 1948<=YEAR & YEAR<=2018)
capital$U_L <- capital$U/capital$L*100
capital$K2_N <- capital$K2/capital$N*100
capital$A2_K2 <- capital$A2/capital$K2*100
capital$C2_A2 <- capital$C2/capital$A2*100
capital$C2_K2 <- capital$C2/capital$K2*100
capital$I2_C2 <- capital$I2/capital$C2*100
capital$S2_C2 <- capital$S2/capital$C2*100
capital$X2_C2 <- capital$X2/capital$C2*100
capital$LU_L <- log(capital$U_L)
capital$LK2_N <- log(capital$K2_N)
capital$LA2_K2 <- log(capital$A2_K2)
capital$LC2_A2 <- log(capital$C2_A2)
capital$LC2_K2 <- log(capital$C2_K2)
capital$LI2_C2 <- log(capital$I2_C2)
capital$S2_C2_1 <- (capital$S2+1)/capital$C2*100
capital$X2_C2_1 <- (capital$X2+1)/capital$C2*100
capital$LS2_C2 <- log(capital$S2_C2_1)
capital$LX2_C2 <- log(capital$X2_C2_1)
capital$Y1955 <- ifelse(capital$YEAR<1955,0,1)
capital$Y1972 <- ifelse(capital$YEAR<1972,0,1)
capital$Y2005 <- ifelse(capital$YEAR<2005,0,1)
library(RcmdrMisc)
sum_K2 <- numSummary(capital[,c("U_L","K2_N","A2_K2","C2_A2","C2_K2","I2_C2","S2_C2","X2_C2")],statistics=c("mean", "sd", "quantiles"), quantiles=c(0,.5,1))
sum_K2a <- cbind(sum_K2$table,sum_K2$n)
print(round(sum_K2a,3))
## mean sd 0% 50% 100%
## U_L 2.644 1.229 1.118 2.269 5.367 71
## K2_N 1.709 0.858 0.705 1.465 3.490 71
## A2_K2 96.739 1.556 91.784 96.688 101.279 71
## C2_A2 50.352 9.073 25.161 52.636 64.401 71
## C2_K2 48.671 8.646 25.435 50.792 62.681 71
## I2_C2 2.020 1.096 0.616 1.764 5.714 71
## S2_C2 0.554 0.680 0.000 0.356 5.025 71
## X2_C2 0.349 0.640 0.000 0.157 4.833 71
cor_K2 <- cor(capital[,c("U_L","A2_K2","C2_A2","C2_K2","I2_C2","S2_C2","X2_C2")])
print(round(cor_K2,3))
## U_L A2_K2 C2_A2 C2_K2 I2_C2 S2_C2 X2_C2
## U_L 1.000 -0.054 -0.126 -0.138 0.476 0.154 0.110
## A2_K2 -0.054 1.000 -0.289 -0.217 -0.279 -0.373 0.019
## C2_A2 -0.126 -0.289 1.000 0.997 -0.264 -0.082 -0.426
## C2_K2 -0.138 -0.217 0.997 1.000 -0.294 -0.119 -0.433
## I2_C2 0.476 -0.279 -0.264 -0.294 1.000 0.629 0.215
## S2_C2 0.154 -0.373 -0.082 -0.119 0.629 1.000 0.118
## X2_C2 0.110 0.019 -0.426 -0.433 0.215 0.118 1.000
par(mar = c(4, 4, 2, 1))
plot(capital$YEAR,capital$U_L,type="l",xlab="",ylab="",main="Unemployment rate")
plot(capital$YEAR,capital$K2_N,type="l",xlab="",ylab="",main="Homicide rate")
plot(capital$YEAR,capital$A2_K2,type="l",xlab="",ylab="",main="Clearance rate")
plot(capital$YEAR,capital$C2_A2,type="l",xlab="",ylab="",main="Conviction rate 1")
plot(capital$YEAR,capital$C2_K2,type="l",xlab="",ylab="",main="Conviction rate 2")
plot(capital$YEAR,capital$I2_C2,type="l",xlab="",ylab="",main="Life Sentence rate")
plot(capital$YEAR,capital$S2_C2,type="l",xlab="",ylab="",main="Death Sentence rate")
plot(capital$YEAR,capital$X2_C2,type="l",xlab="",ylab="",main="Execution rate")
library(CADFtest)
print(CADFtest(capital$LK2_N, type="trend", max.lag.y=5, criterion="MAIC"),digits=6)
##
## ADF test
##
## data: capital$LK2_N
## ADF(1) = -2.078, p-value = 0.548
## alternative hypothesis: true delta is less than 0
## sample estimates:
## delta
## -0.149623
print(CADFtest(capital$LA2_K2, type="trend", max.lag.y=5, criterion="MAIC"),digits=6)
##
## ADF test
##
## data: capital$LA2_K2
## ADF(3) = -1.143, p-value = 0.913
## alternative hypothesis: true delta is less than 0
## sample estimates:
## delta
## -0.253265
print(CADFtest(capital$LC2_A2, type="trend", max.lag.y=5, criterion="MAIC"),digits=6)
##
## ADF test
##
## data: capital$LC2_A2
## ADF(2) = -1.811, p-value = 0.688
## alternative hypothesis: true delta is less than 0
## sample estimates:
## delta
## -0.129821
print(CADFtest(capital$LC2_K2, type="trend", max.lag.y=5, criterion="MAIC"),digits=6)
##
## ADF test
##
## data: capital$LC2_K2
## ADF(2) = -1.99, p-value = 0.596
## alternative hypothesis: true delta is less than 0
## sample estimates:
## delta
## -0.147804
print(CADFtest(capital$LI2_C2, type="trend", max.lag.y=5, criterion="MAIC"),digits=6)
##
## ADF test
##
## data: capital$LI2_C2
## ADF(3) = -2.826, p-value = 0.194
## alternative hypothesis: true delta is less than 0
## sample estimates:
## delta
## -0.431698
print(CADFtest(capital$LS2_C2, type="trend", max.lag.y=5, criterion="MAIC"),digits=6)
##
## ADF test
##
## data: capital$LS2_C2
## ADF(3) = -3.238, p-value = 0.0863
## alternative hypothesis: true delta is less than 0
## sample estimates:
## delta
## -0.623564
print(CADFtest(capital$LX2_C2, type="trend", max.lag.y=5, criterion="MAIC"),digits=6)
##
## ADF test
##
## data: capital$LX2_C2
## ADF(5) = -1.601, p-value = 0.782
## alternative hypothesis: true delta is less than 0
## sample estimates:
## delta
## -0.379475
print(CADFtest(capital$LU_L, type="trend", max.lag.y=5, criterion="MAIC"),digits=6)
##
## ADF test
##
## data: capital$LU_L
## ADF(2) = -1.47, p-value = 0.83
## alternative hypothesis: true delta is less than 0
## sample estimates:
## delta
## -0.0707852
print(CADFtest(capital$LK2_N, type="drift", max.lag.y=5, criterion="MAIC"),digits=6)
##
## ADF test
##
## data: capital$LK2_N
## ADF(1) = -1.193, p-value = 0.673
## alternative hypothesis: true delta is less than 0
## sample estimates:
## delta
## -0.01944
print(CADFtest(capital$LA2_K2, type="drift", max.lag.y=5, criterion="MAIC"),digits=6)
##
## ADF test
##
## data: capital$LA2_K2
## ADF(3) = -1.373, p-value = 0.59
## alternative hypothesis: true delta is less than 0
## sample estimates:
## delta
## -0.293543
print(CADFtest(capital$LC2_A2, type="drift", max.lag.y=5, criterion="MAIC"),digits=6)
##
## ADF test
##
## data: capital$LC2_A2
## ADF(1) = -0.8775, p-value = 0.789
## alternative hypothesis: true delta is less than 0
## sample estimates:
## delta
## -0.0621418
print(CADFtest(capital$LC2_K2, type="drift", max.lag.y=5, criterion="MAIC"),digits=6)
##
## ADF test
##
## data: capital$LC2_K2
## ADF(1) = -0.9995, p-value = 0.749
## alternative hypothesis: true delta is less than 0
## sample estimates:
## delta
## -0.0732074
print(CADFtest(capital$LI2_C2, type="drift", max.lag.y=5, criterion="MAIC"),digits=6)
##
## ADF test
##
## data: capital$LI2_C2
## ADF(3) = -1.608, p-value = 0.473
## alternative hypothesis: true delta is less than 0
## sample estimates:
## delta
## -0.210157
print(CADFtest(capital$LS2_C2, type="drift", max.lag.y=5, criterion="MAIC"),digits=6)
##
## ADF test
##
## data: capital$LS2_C2
## ADF(3) = -1.577, p-value = 0.489
## alternative hypothesis: true delta is less than 0
## sample estimates:
## delta
## -0.245687
print(CADFtest(capital$LX2_C2, type="drift", max.lag.y=5, criterion="MAIC"),digits=6)
##
## ADF test
##
## data: capital$LX2_C2
## ADF(4) = -0.5082, p-value = 0.882
## alternative hypothesis: true delta is less than 0
## sample estimates:
## delta
## -0.0854885
print(CADFtest(capital$LU_L, type="drift", max.lag.y=5, criterion="MAIC"),digits=6)
##
## ADF test
##
## data: capital$LU_L
## ADF(3) = -1.58, p-value = 0.487
## alternative hypothesis: true delta is less than 0
## sample estimates:
## delta
## -0.0423042
print(CADFtest(diff(capital$LK2_N), type="trend", max.lag.y=5, criterion="MAIC"),digits=6)
##
## ADF test
##
## data: diff(capital$LK2_N)
## ADF(0) = -9.634, p-value = 9.13e-09
## alternative hypothesis: true delta is less than 0
## sample estimates:
## delta
## -1.1976
print(CADFtest(diff(capital$LA2_K2), type="trend", max.lag.y=5, criterion="MAIC"),digits=7)
##
## ADF test
##
## data: diff(capital$LA2_K2)
## ADF(0) = -17.729, p-value = 1e-04
## alternative hypothesis: true delta is less than 0
## sample estimates:
## delta
## -1.712858
print(CADFtest(diff(capital$LC2_A2), type="trend", max.lag.y=5, criterion="MAIC"),digits=7)
##
## ADF test
##
## data: diff(capital$LC2_A2)
## ADF(0) = -11.552, p-value = 3.491e-07
## alternative hypothesis: true delta is less than 0
## sample estimates:
## delta
## -1.414344
print(CADFtest(diff(capital$LC2_K2), type="trend", max.lag.y=5, criterion="MAIC"),digits=7)
##
## ADF test
##
## data: diff(capital$LC2_K2)
## ADF(0) = -11.562, p-value = 3.614e-07
## alternative hypothesis: true delta is less than 0
## sample estimates:
## delta
## -1.398386
print(CADFtest(diff(capital$LI2_C2), type="trend", max.lag.y=5, criterion="MAIC"),digits=7)
##
## ADF test
##
## data: diff(capital$LI2_C2)
## ADF(0) = -11.477, p-value = 2.691e-07
## alternative hypothesis: true delta is less than 0
## sample estimates:
## delta
## -1.365994
print(CADFtest(diff(capital$LS2_C2), type="trend", max.lag.y=5, criterion="MAIC"),digits=7)
##
## ADF test
##
## data: diff(capital$LS2_C2)
## ADF(0) = -15.901, p-value = 1e-04
## alternative hypothesis: true delta is less than 0
## sample estimates:
## delta
## -1.613699
print(CADFtest(diff(capital$LX2_C2), type="trend", max.lag.y=5, criterion="MAIC"),digits=7)
##
## ADF test
##
## data: diff(capital$LX2_C2)
## ADF(0) = -12.406, p-value = 1.153e-05
## alternative hypothesis: true delta is less than 0
## sample estimates:
## delta
## -1.443024
print(CADFtest(diff(capital$LU_L), type="trend", max.lag.y=5, criterion="MAIC"),digits=6)
##
## ADF test
##
## data: diff(capital$LU_L)
## ADF(2) = -3.243, p-value = 0.0855
## alternative hypothesis: true delta is less than 0
## sample estimates:
## delta
## -0.535715
print(CADFtest(diff(capital$LK2_N), type="drift", max.lag.y=5, criterion="MAIC"),digits=6)
##
## ADF test
##
## data: diff(capital$LK2_N)
## ADF(3) = -3.893, p-value = 0.00357
## alternative hypothesis: true delta is less than 0
## sample estimates:
## delta
## -1.16436
print(CADFtest(diff(capital$LA2_K2), type="drift", max.lag.y=5, criterion="MAIC"),digits=7)
##
## ADF test
##
## data: diff(capital$LA2_K2)
## ADF(0) = -17.821, p-value = 2.056e-09
## alternative hypothesis: true delta is less than 0
## sample estimates:
## delta
## -1.709708
print(CADFtest(diff(capital$LC2_A2), type="drift", max.lag.y=5, criterion="MAIC"),digits=6)
##
## ADF test
##
## data: diff(capital$LC2_A2)
## ADF(3) = -3.118, p-value = 0.0302
## alternative hypothesis: true delta is less than 0
## sample estimates:
## delta
## -0.967469
print(CADFtest(diff(capital$LC2_K2), type="drift", max.lag.y=5, criterion="MAIC"),digits=6)
##
## ADF test
##
## data: diff(capital$LC2_K2)
## ADF(3) = -3.234, p-value = 0.0225
## alternative hypothesis: true delta is less than 0
## sample estimates:
## delta
## -1.02566
print(CADFtest(diff(capital$LI2_C2), type="drift", max.lag.y=5, criterion="MAIC"),digits=7)
##
## ADF test
##
## data: diff(capital$LI2_C2)
## ADF(0) = -11.557, p-value = 6.107e-13
## alternative hypothesis: true delta is less than 0
## sample estimates:
## delta
## -1.364579
print(CADFtest(diff(capital$LS2_C2), type="drift", max.lag.y=5, criterion="MAIC"),digits=7)
##
## ADF test
##
## data: diff(capital$LS2_C2)
## ADF(0) = -16.005, p-value = 1.184e-11
## alternative hypothesis: true delta is less than 0
## sample estimates:
## delta
## -1.61214
print(CADFtest(diff(capital$LX2_C2), type="drift", max.lag.y=5, criterion="MAIC"),digits=7)
##
## ADF test
##
## data: diff(capital$LX2_C2)
## ADF(0) = -12.465, p-value = 3.127e-13
## alternative hypothesis: true delta is less than 0
## sample estimates:
## delta
## -1.440928
print(CADFtest(diff(capital$LU_L), type="drift", max.lag.y=5, criterion="MAIC"),digits=6)
##
## ADF test
##
## data: diff(capital$LU_L)
## ADF(2) = -3.27, p-value = 0.0205
## alternative hypothesis: true delta is less than 0
## sample estimates:
## delta
## -0.535222
library(urca)
summary(ur.kpss(capital$LK2_N,type="tau",lags="short"))
##
## #######################
## # KPSS Unit Root Test #
## #######################
##
## Test is of type: tau with 3 lags.
##
## Value of test-statistic is: 0.2387
##
## Critical value for a significance level of:
## 10pct 5pct 2.5pct 1pct
## critical values 0.119 0.146 0.176 0.216
summary(ur.kpss(capital$LA2_K2,type="tau",lags="short"))
##
## #######################
## # KPSS Unit Root Test #
## #######################
##
## Test is of type: tau with 3 lags.
##
## Value of test-statistic is: 0.1132
##
## Critical value for a significance level of:
## 10pct 5pct 2.5pct 1pct
## critical values 0.119 0.146 0.176 0.216
summary(ur.kpss(capital$LC2_A2,type="tau",lags="short"))
##
## #######################
## # KPSS Unit Root Test #
## #######################
##
## Test is of type: tau with 3 lags.
##
## Value of test-statistic is: 0.273
##
## Critical value for a significance level of:
## 10pct 5pct 2.5pct 1pct
## critical values 0.119 0.146 0.176 0.216
summary(ur.kpss(capital$LC2_K2,type="tau",lags="short"))
##
## #######################
## # KPSS Unit Root Test #
## #######################
##
## Test is of type: tau with 3 lags.
##
## Value of test-statistic is: 0.2779
##
## Critical value for a significance level of:
## 10pct 5pct 2.5pct 1pct
## critical values 0.119 0.146 0.176 0.216
summary(ur.kpss(capital$LI2_C2,type="tau",lags="short"))
##
## #######################
## # KPSS Unit Root Test #
## #######################
##
## Test is of type: tau with 3 lags.
##
## Value of test-statistic is: 0.3239
##
## Critical value for a significance level of:
## 10pct 5pct 2.5pct 1pct
## critical values 0.119 0.146 0.176 0.216
summary(ur.kpss(capital$LS2_C2,type="tau",lags="short"))
##
## #######################
## # KPSS Unit Root Test #
## #######################
##
## Test is of type: tau with 3 lags.
##
## Value of test-statistic is: 0.2432
##
## Critical value for a significance level of:
## 10pct 5pct 2.5pct 1pct
## critical values 0.119 0.146 0.176 0.216
summary(ur.kpss(capital$LX2_C2,type="tau",lags="short"))
##
## #######################
## # KPSS Unit Root Test #
## #######################
##
## Test is of type: tau with 3 lags.
##
## Value of test-statistic is: 0.1953
##
## Critical value for a significance level of:
## 10pct 5pct 2.5pct 1pct
## critical values 0.119 0.146 0.176 0.216
summary(ur.kpss(capital$LU_L,type="tau",lags="short"))
##
## #######################
## # KPSS Unit Root Test #
## #######################
##
## Test is of type: tau with 3 lags.
##
## Value of test-statistic is: 0.1685
##
## Critical value for a significance level of:
## 10pct 5pct 2.5pct 1pct
## critical values 0.119 0.146 0.176 0.216
summary(ur.kpss(capital$LK2_N,type="mu",lags="short"))
##
## #######################
## # KPSS Unit Root Test #
## #######################
##
## Test is of type: mu with 3 lags.
##
## Value of test-statistic is: 1.808
##
## Critical value for a significance level of:
## 10pct 5pct 2.5pct 1pct
## critical values 0.347 0.463 0.574 0.739
summary(ur.kpss(capital$LA2_K2,type="mu",lags="short"))
##
## #######################
## # KPSS Unit Root Test #
## #######################
##
## Test is of type: mu with 3 lags.
##
## Value of test-statistic is: 0.1444
##
## Critical value for a significance level of:
## 10pct 5pct 2.5pct 1pct
## critical values 0.347 0.463 0.574 0.739
summary(ur.kpss(capital$LC2_A2,type="mu",lags="short"))
##
## #######################
## # KPSS Unit Root Test #
## #######################
##
## Test is of type: mu with 3 lags.
##
## Value of test-statistic is: 0.4069
##
## Critical value for a significance level of:
## 10pct 5pct 2.5pct 1pct
## critical values 0.347 0.463 0.574 0.739
summary(ur.kpss(capital$LC2_K2,type="mu",lags="short"))
##
## #######################
## # KPSS Unit Root Test #
## #######################
##
## Test is of type: mu with 3 lags.
##
## Value of test-statistic is: 0.4098
##
## Critical value for a significance level of:
## 10pct 5pct 2.5pct 1pct
## critical values 0.347 0.463 0.574 0.739
summary(ur.kpss(capital$LI2_C2,type="mu",lags="short"))
##
## #######################
## # KPSS Unit Root Test #
## #######################
##
## Test is of type: mu with 3 lags.
##
## Value of test-statistic is: 0.5876
##
## Critical value for a significance level of:
## 10pct 5pct 2.5pct 1pct
## critical values 0.347 0.463 0.574 0.739
summary(ur.kpss(capital$LS2_C2,type="mu",lags="short"))
##
## #######################
## # KPSS Unit Root Test #
## #######################
##
## Test is of type: mu with 3 lags.
##
## Value of test-statistic is: 0.4806
##
## Critical value for a significance level of:
## 10pct 5pct 2.5pct 1pct
## critical values 0.347 0.463 0.574 0.739
summary(ur.kpss(capital$LX2_C2,type="mu",lags="short"))
##
## #######################
## # KPSS Unit Root Test #
## #######################
##
## Test is of type: mu with 3 lags.
##
## Value of test-statistic is: 0.8529
##
## Critical value for a significance level of:
## 10pct 5pct 2.5pct 1pct
## critical values 0.347 0.463 0.574 0.739
summary(ur.kpss(capital$LU_L,type="mu",lags="short"))
##
## #######################
## # KPSS Unit Root Test #
## #######################
##
## Test is of type: mu with 3 lags.
##
## Value of test-statistic is: 1.3555
##
## Critical value for a significance level of:
## 10pct 5pct 2.5pct 1pct
## critical values 0.347 0.463 0.574 0.739
summary(ur.kpss(diff(capital$LK2_N),type="tau",lags="short"))
##
## #######################
## # KPSS Unit Root Test #
## #######################
##
## Test is of type: tau with 3 lags.
##
## Value of test-statistic is: 0.069
##
## Critical value for a significance level of:
## 10pct 5pct 2.5pct 1pct
## critical values 0.119 0.146 0.176 0.216
summary(ur.kpss(diff(capital$LA2_K2),type="tau",lags="short"))
##
## #######################
## # KPSS Unit Root Test #
## #######################
##
## Test is of type: tau with 3 lags.
##
## Value of test-statistic is: 0.0814
##
## Critical value for a significance level of:
## 10pct 5pct 2.5pct 1pct
## critical values 0.119 0.146 0.176 0.216
summary(ur.kpss(diff(capital$LC2_A2),type="tau",lags="short"))
##
## #######################
## # KPSS Unit Root Test #
## #######################
##
## Test is of type: tau with 3 lags.
##
## Value of test-statistic is: 0.0586
##
## Critical value for a significance level of:
## 10pct 5pct 2.5pct 1pct
## critical values 0.119 0.146 0.176 0.216
summary(ur.kpss(diff(capital$LC2_K2),type="tau",lags="short"))
##
## #######################
## # KPSS Unit Root Test #
## #######################
##
## Test is of type: tau with 3 lags.
##
## Value of test-statistic is: 0.0529
##
## Critical value for a significance level of:
## 10pct 5pct 2.5pct 1pct
## critical values 0.119 0.146 0.176 0.216
summary(ur.kpss(diff(capital$LI2_C2),type="tau",lags="short"))
##
## #######################
## # KPSS Unit Root Test #
## #######################
##
## Test is of type: tau with 3 lags.
##
## Value of test-statistic is: 0.061
##
## Critical value for a significance level of:
## 10pct 5pct 2.5pct 1pct
## critical values 0.119 0.146 0.176 0.216
summary(ur.kpss(diff(capital$LS2_C2),type="tau",lags="short"))
##
## #######################
## # KPSS Unit Root Test #
## #######################
##
## Test is of type: tau with 3 lags.
##
## Value of test-statistic is: 0.087
##
## Critical value for a significance level of:
## 10pct 5pct 2.5pct 1pct
## critical values 0.119 0.146 0.176 0.216
summary(ur.kpss(diff(capital$LX2_C2),type="tau",lags="short"))
##
## #######################
## # KPSS Unit Root Test #
## #######################
##
## Test is of type: tau with 3 lags.
##
## Value of test-statistic is: 0.0432
##
## Critical value for a significance level of:
## 10pct 5pct 2.5pct 1pct
## critical values 0.119 0.146 0.176 0.216
summary(ur.kpss(diff(capital$LU_L),type="tau",lags="short"))
##
## #######################
## # KPSS Unit Root Test #
## #######################
##
## Test is of type: tau with 3 lags.
##
## Value of test-statistic is: 0.115
##
## Critical value for a significance level of:
## 10pct 5pct 2.5pct 1pct
## critical values 0.119 0.146 0.176 0.216
summary(ur.kpss(diff(capital$LK2_N),type="mu",lags="short"))
##
## #######################
## # KPSS Unit Root Test #
## #######################
##
## Test is of type: mu with 3 lags.
##
## Value of test-statistic is: 0.067
##
## Critical value for a significance level of:
## 10pct 5pct 2.5pct 1pct
## critical values 0.347 0.463 0.574 0.739
summary(ur.kpss(diff(capital$LA2_K2),type="mu",lags="short"))
##
## #######################
## # KPSS Unit Root Test #
## #######################
##
## Test is of type: mu with 3 lags.
##
## Value of test-statistic is: 0.1483
##
## Critical value for a significance level of:
## 10pct 5pct 2.5pct 1pct
## critical values 0.347 0.463 0.574 0.739
summary(ur.kpss(diff(capital$LC2_A2),type="mu",lags="short"))
##
## #######################
## # KPSS Unit Root Test #
## #######################
##
## Test is of type: mu with 3 lags.
##
## Value of test-statistic is: 0.1741
##
## Critical value for a significance level of:
## 10pct 5pct 2.5pct 1pct
## critical values 0.347 0.463 0.574 0.739
summary(ur.kpss(diff(capital$LC2_K2),type="mu",lags="short"))
##
## #######################
## # KPSS Unit Root Test #
## #######################
##
## Test is of type: mu with 3 lags.
##
## Value of test-statistic is: 0.1982
##
## Critical value for a significance level of:
## 10pct 5pct 2.5pct 1pct
## critical values 0.347 0.463 0.574 0.739
summary(ur.kpss(diff(capital$LI2_C2),type="mu",lags="short"))
##
## #######################
## # KPSS Unit Root Test #
## #######################
##
## Test is of type: mu with 3 lags.
##
## Value of test-statistic is: 0.2022
##
## Critical value for a significance level of:
## 10pct 5pct 2.5pct 1pct
## critical values 0.347 0.463 0.574 0.739
summary(ur.kpss(diff(capital$LS2_C2),type="mu",lags="short"))
##
## #######################
## # KPSS Unit Root Test #
## #######################
##
## Test is of type: mu with 3 lags.
##
## Value of test-statistic is: 0.2755
##
## Critical value for a significance level of:
## 10pct 5pct 2.5pct 1pct
## critical values 0.347 0.463 0.574 0.739
summary(ur.kpss(diff(capital$LX2_C2),type="mu",lags="short"))
##
## #######################
## # KPSS Unit Root Test #
## #######################
##
## Test is of type: mu with 3 lags.
##
## Value of test-statistic is: 0.1993
##
## Critical value for a significance level of:
## 10pct 5pct 2.5pct 1pct
## critical values 0.347 0.463 0.574 0.739
summary(ur.kpss(diff(capital$LU_L),type="mu",lags="short"))
##
## #######################
## # KPSS Unit Root Test #
## #######################
##
## Test is of type: mu with 3 lags.
##
## Value of test-statistic is: 0.1628
##
## Critical value for a significance level of:
## 10pct 5pct 2.5pct 1pct
## critical values 0.347 0.463 0.574 0.739
dat_K2_2 <- capital[,c("LU_L","LK2_N","LC2_K2","LI2_C2","LS2_C2","LX2_C2")]
dum <- capital[,c("Y1955","Y1972","Y2005")]
library(vars)
VARselect(dat_K2_2, lag.max=5, type="const", exogen=dum)
## $selection
## AIC(n) HQ(n) SC(n) FPE(n)
## 5 1 1 5
##
## $criteria
## 1 2 3 4 5
## AIC(n) -1.835699e+01 -1.826033e+01 -1.814427e+01 -1.820428e+01 -1.943218e+01
## HQ(n) -1.757041e+01 -1.700180e+01 -1.641380e+01 -1.600185e+01 -1.675781e+01
## SC(n) -1.636639e+01 -1.507538e+01 -1.376496e+01 -1.263061e+01 -1.266416e+01
## FPE(n) 1.080907e-08 1.245378e-08 1.545413e-08 1.750231e-08 6.999735e-09
rank_K2_const_2 <- ca.jo(dat_K2_2, ecdet=c("const"),type="trace",K=2,spec="longrun",dumvar=dum)
summary(rank_K2_const_2)
##
## ######################
## # Johansen-Procedure #
## ######################
##
## Test type: trace statistic , without linear trend and constant in cointegration
##
## Eigenvalues (lambda):
## [1] 4.323190e-01 3.803469e-01 3.345632e-01 1.841003e-01 1.032335e-01
## [6] 6.242613e-02 6.661338e-16
##
## Values of teststatistic and critical values of test:
##
## test 10pct 5pct 1pct
## r <= 5 | 4.45 7.52 9.24 12.97
## r <= 4 | 11.97 17.85 19.96 24.60
## r <= 3 | 26.00 32.00 34.91 41.07
## r <= 2 | 54.11 49.65 53.12 60.16
## r <= 1 | 87.13 71.86 76.07 84.45
## r = 0 | 126.20 97.18 102.14 111.01
##
## Eigenvectors, normalised to first column:
## (These are the cointegration relations)
##
## LU_L.l2 LK2_N.l2 LC2_K2.l2 LI2_C2.l2 LS2_C2.l2 LX2_C2.l2
## LU_L.l2 1.00000000 1.000000 1.00000000 1.000000 1.00000000 1.0000000
## LK2_N.l2 -0.08563392 1.101482 1.48568634 -44.881139 -3.53141500 1.2914279
## LC2_K2.l2 -0.86329780 -7.257757 -0.36696700 98.515022 -0.20822702 2.3029327
## LI2_C2.l2 -2.11812176 1.639968 -0.09638776 -27.193273 -0.07045611 0.2685567
## LS2_C2.l2 0.87016505 -1.433542 -0.45424965 -25.822654 -0.05179951 0.2891275
## LX2_C2.l2 -0.19493510 -1.761629 0.61569218 2.193684 0.22517002 0.1594403
## constant 4.37350289 18.341556 0.14810258 -298.880639 4.43662536 -12.0198141
## constant
## LU_L.l2 1.0000000
## LK2_N.l2 -0.2646032
## LC2_K2.l2 1.5357304
## LI2_C2.l2 -0.2399128
## LS2_C2.l2 -0.4670023
## LX2_C2.l2 -0.2280600
## constant -4.8498921
##
## Weights W:
## (This is the loading matrix)
##
## LU_L.l2 LK2_N.l2 LC2_K2.l2 LI2_C2.l2 LS2_C2.l2
## LU_L.d -0.02047251 -0.0064457569 -0.00234825 4.640915e-04 -0.010814601
## LK2_N.d -0.02690932 0.0007915992 0.00858428 7.224453e-05 0.015474179
## LC2_K2.d 0.04711451 0.0161822875 0.07485182 -3.047768e-04 -0.005775784
## LI2_C2.d 0.35368910 -0.0134935828 -0.01761382 6.701195e-03 0.014486979
## LS2_C2.d -0.18513229 0.1413606673 0.31208257 1.183133e-02 -0.003847439
## LX2_C2.d 0.02877281 0.2474760389 -0.64766868 -2.964487e-04 0.012056018
## LX2_C2.l2 constant
## LU_L.d -0.030786984 2.651460e-16
## LK2_N.d -0.006144532 -2.353504e-15
## LC2_K2.d -0.009416477 -2.271823e-14
## LI2_C2.d -0.021938491 3.646985e-14
## LS2_C2.d -0.008900883 1.882460e-14
## LX2_C2.d -0.043552887 -2.275182e-13
rank_K2_trend_2 <- ca.jo(dat_K2_2, ecdet=c("trend"),type="trace",K=2,spec="longrun",dumvar=dum)
summary(rank_K2_trend_2)
##
## ######################
## # Johansen-Procedure #
## ######################
##
## Test type: trace statistic , with linear trend in cointegration
##
## Eigenvalues (lambda):
## [1] 4.671144e-01 4.052823e-01 3.345194e-01 1.953452e-01 1.034380e-01
## [6] 3.224415e-02 4.163336e-17
##
## Values of teststatistic and critical values of test:
##
## test 10pct 5pct 1pct
## r <= 5 | 2.26 10.49 12.25 16.26
## r <= 4 | 9.80 22.76 25.32 30.45
## r <= 3 | 24.79 39.06 42.44 48.45
## r <= 2 | 52.89 59.14 62.99 70.05
## r <= 1 | 88.75 83.20 87.31 96.58
## r = 0 | 132.18 110.42 114.90 124.75
##
## Eigenvectors, normalised to first column:
## (These are the cointegration relations)
##
## LU_L.l2 LK2_N.l2 LC2_K2.l2 LI2_C2.l2 LS2_C2.l2
## LU_L.l2 1.0000000 1.0000000 1.000000000 1.00000000 1.00000000
## LK2_N.l2 -3.9958474 7.7211266 1.566231143 -2.72477665 -4.66048757
## LC2_K2.l2 1.2186532 -6.6862864 0.011715527 -2.79088822 0.12240172
## LI2_C2.l2 -1.5715624 -1.8498059 -0.170257166 0.83174535 -0.40294384
## LS2_C2.l2 1.0940887 -0.2662846 -0.443675894 0.83816160 -0.40930898
## LX2_C2.l2 0.3166758 -1.4746860 0.738273147 0.01449794 0.05205570
## trend.l2 -0.1178612 0.2154370 0.001968889 -0.12663513 -0.04265582
## LX2_C2.l2 trend.l2
## LU_L.l2 1.00000000 1.00000000
## LK2_N.l2 0.48163912 -4.51183275
## LC2_K2.l2 1.97362190 0.44688165
## LI2_C2.l2 -0.08008088 -0.29947027
## LS2_C2.l2 -0.24785478 -0.03653680
## LX2_C2.l2 -0.08614736 -0.05042698
## trend.l2 0.01165801 -0.14772562
##
## Weights W:
## (This is the loading matrix)
##
## LU_L.l2 LK2_N.l2 LC2_K2.l2 LI2_C2.l2 LS2_C2.l2
## LU_L.d -0.023109708 -0.005948199 -0.0005290804 -0.033352646 -0.003763235
## LK2_N.d -0.025654003 -0.008706464 0.0079626810 0.005467172 0.020250000
## LC2_K2.d 0.000655055 0.031425404 0.0619898277 0.006484110 -0.004436507
## LI2_C2.d 0.341330472 0.103489132 -0.0035258417 -0.231036448 0.048013924
## LS2_C2.d -0.614430000 0.055015214 0.2632540525 -0.317866514 0.053631910
## LX2_C2.d -0.481819240 0.171271667 -0.6867236399 0.045202650 0.040954197
## LX2_C2.l2 trend.l2
## LU_L.d -0.037896502 1.180439e-14
## LK2_N.d -0.004615909 -3.367341e-16
## LC2_K2.d -0.011862136 -2.815699e-14
## LI2_C2.d 0.004367677 5.909522e-14
## LS2_C2.d 0.044769843 1.077742e-13
## LX2_C2.d -0.028983354 -1.680801e-13
vecm_K2_2 <- cajorls(rank_K2_trend_2, r=2)
print(vecm_K2_2, digits=3)
## $rlm
##
## Call:
## lm(formula = substitute(form1), data = data.mat)
##
## Coefficients:
## LU_L.d LK2_N.d LC2_K2.d LI2_C2.d LS2_C2.d LX2_C2.d
## ect1 -0.02906 -0.03436 0.03208 0.44482 -0.55941 -0.31055
## ect2 0.04642 0.03529 0.24002 -0.56485 2.87995 3.24769
## constant -0.07977 -0.17288 0.41226 1.96416 -1.22845 0.76847
## Y1955 -0.08151 -0.05222 0.06618 0.27922 0.43067 0.45861
## Y1972 0.07208 0.03394 -0.04894 -0.11489 0.53924 0.03891
## Y2005 -0.08152 -0.02014 -0.09687 0.10154 -0.79298 -0.48622
## LU_L.dl1 0.19997 0.08007 0.16021 0.07902 -1.10774 0.32949
## LK2_N.dl1 0.26242 -0.24151 0.62968 0.77928 3.91210 -1.49922
## LC2_K2.dl1 -0.00325 0.01613 -0.52989 0.09074 -1.03692 -3.34693
## LI2_C2.dl1 0.01117 -0.00533 0.02921 -0.69887 0.55675 0.30755
## LS2_C2.dl1 -0.00755 -0.00203 -0.01067 0.14281 -0.97881 -0.18809
## LX2_C2.dl1 0.02253 0.00450 -0.02632 0.02136 -0.14422 -0.64247
##
##
## $beta
## ect1 ect2
## LU_L.l2 1.0000 2.78e-17
## LK2_N.l2 0.0000 1.00e+00
## LC2_K2.l2 -1.4772 -6.75e-01
## LI2_C2.l2 -1.6665 -2.37e-02
## LS2_C2.l2 0.6302 -1.16e-01
## LX2_C2.l2 -0.2942 -1.53e-01
## trend.l2 -0.0042 2.84e-02
print(coef(summary(vecm_K2_2$rlm)),digits=3)
## Response LU_L.d :
## Estimate Std. Error t value Pr(>|t|)
## ect1 -0.02906 0.0287 -1.0112 0.3162
## ect2 0.04642 0.1306 0.3554 0.7236
## constant -0.07977 0.1500 -0.5319 0.5968
## Y1955 -0.08151 0.0552 -1.4770 0.1452
## Y1972 0.07208 0.0345 2.0921 0.0409
## Y2005 -0.08152 0.0439 -1.8570 0.0685
## LU_L.dl1 0.19997 0.1299 1.5399 0.1291
## LK2_N.dl1 0.26242 0.2427 1.0811 0.2842
## LC2_K2.dl1 -0.00325 0.1440 -0.0226 0.9821
## LI2_C2.dl1 0.01117 0.0359 0.3112 0.7568
## LS2_C2.dl1 -0.00755 0.0223 -0.3390 0.7359
## LX2_C2.dl1 0.02253 0.0165 1.3674 0.1769
##
## Response LK2_N.d :
## Estimate Std. Error t value Pr(>|t|)
## ect1 -0.03436 0.01562 -2.200 0.0319
## ect2 0.03529 0.07098 0.497 0.6210
## constant -0.17288 0.08151 -2.121 0.0383
## Y1955 -0.05222 0.02999 -1.741 0.0870
## Y1972 0.03394 0.01873 1.812 0.0752
## Y2005 -0.02014 0.02386 -0.844 0.4020
## LU_L.dl1 0.08007 0.07058 1.134 0.2613
## LK2_N.dl1 -0.24151 0.13193 -1.831 0.0724
## LC2_K2.dl1 0.01613 0.07829 0.206 0.8375
## LI2_C2.dl1 -0.00533 0.01950 -0.274 0.7854
## LS2_C2.dl1 -0.00203 0.01211 -0.167 0.8678
## LX2_C2.dl1 0.00450 0.00896 0.502 0.6176
##
## Response LC2_K2.d :
## Estimate Std. Error t value Pr(>|t|)
## ect1 0.0321 0.0234 1.373 1.75e-01
## ect2 0.2400 0.1062 2.261 2.76e-02
## constant 0.4123 0.1219 3.381 1.31e-03
## Y1955 0.0662 0.0449 1.475 1.46e-01
## Y1972 -0.0489 0.0280 -1.747 8.60e-02
## Y2005 -0.0969 0.0357 -2.714 8.78e-03
## LU_L.dl1 0.1602 0.1056 1.517 1.35e-01
## LK2_N.dl1 0.6297 0.1974 3.191 2.31e-03
## LC2_K2.dl1 -0.5299 0.1171 -4.525 3.12e-05
## LI2_C2.dl1 0.0292 0.0292 1.001 3.21e-01
## LS2_C2.dl1 -0.0107 0.0181 -0.589 5.58e-01
## LX2_C2.dl1 -0.0263 0.0134 -1.964 5.44e-02
##
## Response LI2_C2.d :
## Estimate Std. Error t value Pr(>|t|)
## ect1 0.4448 0.119 3.749 4.17e-04
## ect2 -0.5649 0.539 -1.048 2.99e-01
## constant 1.9642 0.619 3.172 2.44e-03
## Y1955 0.2792 0.228 1.225 2.25e-01
## Y1972 -0.1149 0.142 -0.808 4.23e-01
## Y2005 0.1015 0.181 0.560 5.78e-01
## LU_L.dl1 0.0790 0.536 0.147 8.83e-01
## LK2_N.dl1 0.7793 1.002 0.778 4.40e-01
## LC2_K2.dl1 0.0907 0.595 0.153 8.79e-01
## LI2_C2.dl1 -0.6989 0.148 -4.717 1.59e-05
## LS2_C2.dl1 0.1428 0.092 1.552 1.26e-01
## LX2_C2.dl1 0.0214 0.068 0.314 7.55e-01
##
## Response LS2_C2.d :
## Estimate Std. Error t value Pr(>|t|)
## ect1 -0.559 0.1743 -3.21 2.18e-03
## ect2 2.880 0.7921 3.64 5.96e-04
## constant -1.228 0.9095 -1.35 1.82e-01
## Y1955 0.431 0.3347 1.29 2.03e-01
## Y1972 0.539 0.2090 2.58 1.25e-02
## Y2005 -0.793 0.2662 -2.98 4.25e-03
## LU_L.dl1 -1.108 0.7876 -1.41 1.65e-01
## LK2_N.dl1 3.912 1.4722 2.66 1.02e-02
## LC2_K2.dl1 -1.037 0.8736 -1.19 2.40e-01
## LI2_C2.dl1 0.557 0.2176 2.56 1.32e-02
## LS2_C2.dl1 -0.979 0.1352 -7.24 1.26e-09
## LX2_C2.dl1 -0.144 0.0999 -1.44 1.54e-01
##
## Response LX2_C2.d :
## Estimate Std. Error t value Pr(>|t|)
## ect1 -0.3105 0.205 -1.514 1.36e-01
## ect2 3.2477 0.932 3.483 9.59e-04
## constant 0.7685 1.071 0.718 4.76e-01
## Y1955 0.4586 0.394 1.164 2.49e-01
## Y1972 0.0389 0.246 0.158 8.75e-01
## Y2005 -0.4862 0.313 -1.551 1.26e-01
## LU_L.dl1 0.3295 0.927 0.355 7.24e-01
## LK2_N.dl1 -1.4992 1.733 -0.865 3.91e-01
## LC2_K2.dl1 -3.3469 1.028 -3.255 1.91e-03
## LI2_C2.dl1 0.3075 0.256 1.201 2.35e-01
## LS2_C2.dl1 -0.1881 0.159 -1.182 2.42e-01
## LX2_C2.dl1 -0.6425 0.118 -5.461 1.08e-06
var_K2_2 <- vec2var(rank_K2_trend_2,r=2)
normality.test(var_K2_2)
## $JB
##
## JB-Test (multivariate)
##
## data: Residuals of VAR object var_K2_2
## Chi-squared = 18.968, df = 12, p-value = 0.08931
##
##
## $Skewness
##
## Skewness only (multivariate)
##
## data: Residuals of VAR object var_K2_2
## Chi-squared = 11.742, df = 6, p-value = 0.06797
##
##
## $Kurtosis
##
## Kurtosis only (multivariate)
##
## data: Residuals of VAR object var_K2_2
## Chi-squared = 7.2254, df = 6, p-value = 0.3005
serial.test(var_K2_2)
##
## Portmanteau Test (asymptotic)
##
## data: Residuals of VAR object var_K2_2
## Chi-squared = 507.54, df = 510, p-value = 0.5225
arch.test(var_K2_2)
##
## ARCH (multivariate)
##
## data: Residuals of VAR object var_K2_2
## Chi-squared = 1344, df = 2205, p-value = 1
cirf_LU_L <- irf(var_K2_2, impulse=c("LU_L"), response=c("LK2_N"), cumulative=T, n.ahead=10, ci=0.95, runs=10000, seed=1)
cirf_LK2_N <- irf(var_K2_2, impulse=c("LK2_N"), response=c("LK2_N"), cumulative=T, n.ahead=10, ci=0.95, runs=10000, seed=1)
cirf_LC2_K2 <- irf(var_K2_2, impulse=c("LC2_K2"), response=c("LK2_N"), cumulative=T, n.ahead=10, ci=0.95, runs=10000, seed=1)
cirf_LI2_C2 <- irf(var_K2_2, impulse=c("LI2_C2"), response=c("LK2_N"), cumulative=T, n.ahead=10, ci=0.95, runs=10000, seed=1)
cirf_LS2_C2 <- irf(var_K2_2, impulse=c("LS2_C2"), response=c("LK2_N"), cumulative=T, n.ahead=10, ci=0.95, runs=10000, seed=1)
cirf_LX2_C2 <- irf(var_K2_2, impulse=c("LX2_C2"), response=c("LK2_N"), cumulative=T, n.ahead=10, ci=0.95, runs=10000, seed=1)
plot(cirf_LU_L)
plot(cirf_LK2_N)
plot(cirf_LC2_K2)
plot(cirf_LI2_C2)
plot(cirf_LS2_C2)
plot(cirf_LX2_C2)
### Forecast error variance decomposition of the homicide rate (Figure 4)
fevd_K2 <- fevd(var_K2_2,n.ahead=10)
par(mar = c(4, 4, 1, 1))
plot(fevd_K2$LK2_N[,1]*100,type="o",pch=1,ylim=c(0,22),xlab="",ylab="",axes = FALSE)
axis(1)
axis(2)
par(new=T)
plot(fevd_K2$LK2_N[,3]*100,type="o",pch=6,ylim=c(0,22),xlab="",ylab="",axes = FALSE)
par(new=T)
plot(fevd_K2$LK2_N[,4]*100,type="o",pch=5,ylim=c(0,22),xlab="",ylab="",axes = FALSE)
par(new=T)
plot(fevd_K2$LK2_N[,5]*100,type="o",pch=15,ylim=c(0,22),xlab="",ylab="",axes = FALSE)
par(new=T)
plot(fevd_K2$LK2_N[,6]*100,type="o",pch=4,ylim=c(0,22),xlab="",ylab="",axes = FALSE)
box()
legend("topright", legend = c("Death Sentence","Unemployment", "Life Sentence","Execution","Conviction"), pch = c(15,1,5,4,6), cex=0.72)
mtext("%",at=0.4)
capital$K4_N <- capital$K4/capital$N*100
capital$A4_K4 <- capital$A4/capital$K4*100
capital$C4_A4 <- capital$C4/capital$A4*100
capital$I4_C4 <- capital$I4/capital$C4*100
capital$S4_C4 <- capital$S4/capital$C4*100
capital$X4_C4 <- capital$X4/capital$C4*100
capital$LK4_N <- log(capital$K4_N)
capital$LA4_K4 <- log(capital$A4_K4)
capital$LC4_A4 <- log(capital$C4_A4)
capital$LI4_C4 <- log(capital$I4_C4)
capital$S4_C4_1 <- (capital$S4+1)/capital$C4*100
capital$X4_C4_1 <- (capital$X4+1)/capital$C4*100
capital$LS4_C4 <- log(capital$S4_C4_1)
capital$LX4_C4 <- log(capital$X4_C4_1)
sum_K4 <- numSummary(capital[,c("K4_N","A4_K4","C4_A4","I4_C4","S4_C4","X4_C4"),drop=F],statistics=c("mean", "sd", "quantiles"), quantiles=c(0,.5,1))
sum_K4a <- cbind(sum_K4$table,sum_K4$n)
print(round(sum_K4a,3))
## mean sd 0% 50% 100%
## K4_N 1.364 0.607 0.576 1.194 2.664 71
## A4_K4 78.502 10.011 51.811 82.839 90.755 71
## C4_A4 48.651 10.027 30.610 47.165 81.741 71
## I4_C4 6.748 1.797 2.643 6.677 13.710 71
## S4_C4 1.220 1.008 0.000 0.872 4.617 71
## X4_C4 1.074 1.211 0.000 0.559 4.075 71
cor_K4 <- cor(capital[,c("U_L","A4_K4","C4_A4","I4_C4","S4_C4","X4_C4")])
print(round(cor_K4,3))
## U_L A4_K4 C4_A4 I4_C4 S4_C4 X4_C4
## U_L 1.000 -0.839 -0.047 0.099 -0.390 -0.457
## A4_K4 -0.839 1.000 -0.114 -0.055 0.427 0.447
## C4_A4 -0.047 -0.114 1.000 0.119 0.489 0.243
## I4_C4 0.099 -0.055 0.119 1.000 0.119 -0.072
## S4_C4 -0.390 0.427 0.489 0.119 1.000 0.431
## X4_C4 -0.457 0.447 0.243 -0.072 0.431 1.000
par(mar = c(4, 4, 2, 1))
plot(capital$YEAR,capital$K4_N,type="l",xlab="",ylab="",main="Robbery-homicide rate")
plot(capital$YEAR,capital$A4_K4,type="l",xlab="",ylab="",main="Clearance rate")
plot(capital$YEAR,capital$C4_A4,type="l",xlab="",ylab="",main="Conviction rate")
plot(capital$YEAR,capital$I4_C4,type="l",xlab="",ylab="",main="Life Sentence rate")
plot(capital$YEAR,capital$S4_C4,type="l",xlab="",ylab="",main="Death Sentence rate")
plot(capital$YEAR,capital$X4_C4,type="l",xlab="",ylab="",main="Execution rate")
print(CADFtest(capital$LK4_N, type="trend", max.lag.y=5, criterion="MAIC"),digits=6)
##
## ADF test
##
## data: capital$LK4_N
## ADF(1) = -1.411, p-value = 0.849
## alternative hypothesis: true delta is less than 0
## sample estimates:
## delta
## -0.04369
print(CADFtest(capital$LA4_K4, type="trend", max.lag.y=5, criterion="MAIC"),digits=6)
##
## ADF test
##
## data: capital$LA4_K4
## ADF(0) = -1.396, p-value = 0.853
## alternative hypothesis: true delta is less than 0
## sample estimates:
## delta
## -0.0912374
print(CADFtest(capital$LC4_A4, type="trend", max.lag.y=5, criterion="MAIC"),digits=6)
##
## ADF test
##
## data: capital$LC4_A4
## ADF(1) = -2.303, p-value = 0.426
## alternative hypothesis: true delta is less than 0
## sample estimates:
## delta
## -0.211811
print(CADFtest(capital$LI4_C4, type="trend", max.lag.y=5, criterion="MAIC"),digits=6)
##
## ADF test
##
## data: capital$LI4_C4
## ADF(5) = -1.679, p-value = 0.749
## alternative hypothesis: true delta is less than 0
## sample estimates:
## delta
## -0.414913
print(CADFtest(capital$LS4_C4, type="trend", max.lag.y=5, criterion="MAIC"),digits=6)
##
## ADF test
##
## data: capital$LS4_C4
## ADF(4) = -2.575, p-value = 0.293
## alternative hypothesis: true delta is less than 0
## sample estimates:
## delta
## -0.577755
print(CADFtest(capital$LX4_C4, type="trend", max.lag.y=5, criterion="MAIC"),digits=6)
##
## ADF test
##
## data: capital$LX4_C4
## ADF(2) = -2.852, p-value = 0.185
## alternative hypothesis: true delta is less than 0
## sample estimates:
## delta
## -0.479578
print(CADFtest(capital$LK4_N, type="drift", max.lag.y=5, criterion="MAIC"),digits=6)
##
## ADF test
##
## data: capital$LK4_N
## ADF(1) = -1.189, p-value = 0.674
## alternative hypothesis: true delta is less than 0
## sample estimates:
## delta
## -0.0351153
print(CADFtest(capital$LA4_K4, type="drift", max.lag.y=5, criterion="MAIC"),digits=6)
##
## ADF test
##
## data: capital$LA4_K4
## ADF(0) = -1.65, p-value = 0.452
## alternative hypothesis: true delta is less than 0
## sample estimates:
## delta
## -0.078448
print(CADFtest(capital$LC4_A4, type="drift", max.lag.y=5, criterion="MAIC"),digits=6)
##
## ADF test
##
## data: capital$LC4_A4
## ADF(1) = -2.156, p-value = 0.224
## alternative hypothesis: true delta is less than 0
## sample estimates:
## delta
## -0.190156
print(CADFtest(capital$LI4_C4, type="drift", max.lag.y=5, criterion="MAIC"),digits=6)
##
## ADF test
##
## data: capital$LI4_C4
## ADF(5) = -1.667, p-value = 0.443
## alternative hypothesis: true delta is less than 0
## sample estimates:
## delta
## -0.408702
print(CADFtest(capital$LS4_C4, type="drift", max.lag.y=5, criterion="MAIC"),digits=6)
##
## ADF test
##
## data: capital$LS4_C4
## ADF(4) = -2.492, p-value = 0.122
## alternative hypothesis: true delta is less than 0
## sample estimates:
## delta
## -0.376591
print(CADFtest(capital$LX4_C4, type="drift", max.lag.y=5, criterion="MAIC"),digits=6)
##
## ADF test
##
## data: capital$LX4_C4
## ADF(2) = -2.741, p-value = 0.0727
## alternative hypothesis: true delta is less than 0
## sample estimates:
## delta
## -0.362308
print(CADFtest(diff(capital$LK4_N), type="trend", max.lag.y=5, criterion="MAIC"),digits=6)
##
## ADF test
##
## data: diff(capital$LK4_N)
## ADF(2) = -2.967, p-value = 0.15
## alternative hypothesis: true delta is less than 0
## sample estimates:
## delta
## -0.432255
print(CADFtest(diff(capital$LA4_K4), type="trend", max.lag.y=5, criterion="MAIC"),digits=6)
##
## ADF test
##
## data: diff(capital$LA4_K4)
## ADF(3) = -3.026, p-value = 0.133
## alternative hypothesis: true delta is less than 0
## sample estimates:
## delta
## -0.716112
print(CADFtest(diff(capital$LC4_A4), type="trend", max.lag.y=5, criterion="MAIC"),digits=6)
##
## ADF test
##
## data: diff(capital$LC4_A4)
## ADF(1) = -6.048, p-value = 1.95e-05
## alternative hypothesis: true delta is less than 0
## sample estimates:
## delta
## -1.23779
print(CADFtest(diff(capital$LI4_C4), type="trend", max.lag.y=5, criterion="MAIC"),digits=7)
##
## ADF test
##
## data: diff(capital$LI4_C4)
## ADF(0) = -14.914, p-value = 1e-04
## alternative hypothesis: true delta is less than 0
## sample estimates:
## delta
## -1.610214
print(CADFtest(diff(capital$LS4_C4), type="trend", max.lag.y=5, criterion="MAIC"),digits=7)
##
## ADF test
##
## data: diff(capital$LS4_C4)
## ADF(0) = -13.304, p-value = 1e-04
## alternative hypothesis: true delta is less than 0
## sample estimates:
## delta
## -1.503655
print(CADFtest(diff(capital$LX4_C4), type="trend", max.lag.y=5, criterion="MAIC"),digits=7)
##
## ADF test
##
## data: diff(capital$LX4_C4)
## ADF(0) = -12.639, p-value = 3.416e-05
## alternative hypothesis: true delta is less than 0
## sample estimates:
## delta
## -1.446717
print(CADFtest(diff(capital$LK4_N), type="drift", max.lag.y=5, criterion="MAIC"),digits=6)
##
## ADF test
##
## data: diff(capital$LK4_N)
## ADF(2) = -2.998, p-value = 0.0404
## alternative hypothesis: true delta is less than 0
## sample estimates:
## delta
## -0.43247
print(CADFtest(diff(capital$LA4_K4), type="drift", max.lag.y=5, criterion="MAIC"),digits=6)
##
## ADF test
##
## data: diff(capital$LA4_K4)
## ADF(3) = -2.983, p-value = 0.0418
## alternative hypothesis: true delta is less than 0
## sample estimates:
## delta
## -0.700026
print(CADFtest(diff(capital$LC4_A4), type="drift", max.lag.y=5, criterion="MAIC"),digits=6)
##
## ADF test
##
## data: diff(capital$LC4_A4)
## ADF(1) = -6.081, p-value = 1.98e-06
## alternative hypothesis: true delta is less than 0
## sample estimates:
## delta
## -1.23534
print(CADFtest(diff(capital$LI4_C4), type="drift", max.lag.y=5, criterion="MAIC"),digits=7)
##
## ADF test
##
## data: diff(capital$LI4_C4)
## ADF(0) = -15.019, p-value = 1.655e-12
## alternative hypothesis: true delta is less than 0
## sample estimates:
## delta
## -1.611149
print(CADFtest(diff(capital$LS4_C4), type="drift", max.lag.y=5, criterion="MAIC"),digits=7)
##
## ADF test
##
## data: diff(capital$LS4_C4)
## ADF(0) = -13.396, p-value = 3.141e-13
## alternative hypothesis: true delta is less than 0
## sample estimates:
## delta
## -1.503467
print(CADFtest(diff(capital$LX4_C4), type="drift", max.lag.y=5, criterion="MAIC"),digits=7)
##
## ADF test
##
## data: diff(capital$LX4_C4)
## ADF(0) = -12.662, p-value = 2.953e-13
## alternative hypothesis: true delta is less than 0
## sample estimates:
## delta
## -1.441917
summary(ur.kpss(capital$LK4_N,type="tau",lags="short"))
##
## #######################
## # KPSS Unit Root Test #
## #######################
##
## Test is of type: tau with 3 lags.
##
## Value of test-statistic is: 0.2495
##
## Critical value for a significance level of:
## 10pct 5pct 2.5pct 1pct
## critical values 0.119 0.146 0.176 0.216
summary(ur.kpss(capital$LA4_K4,type="tau",lags="short"))
##
## #######################
## # KPSS Unit Root Test #
## #######################
##
## Test is of type: tau with 3 lags.
##
## Value of test-statistic is: 0.1062
##
## Critical value for a significance level of:
## 10pct 5pct 2.5pct 1pct
## critical values 0.119 0.146 0.176 0.216
summary(ur.kpss(capital$LC4_A4,type="tau",lags="short"))
##
## #######################
## # KPSS Unit Root Test #
## #######################
##
## Test is of type: tau with 3 lags.
##
## Value of test-statistic is: 0.1736
##
## Critical value for a significance level of:
## 10pct 5pct 2.5pct 1pct
## critical values 0.119 0.146 0.176 0.216
summary(ur.kpss(capital$LI4_C4,type="tau",lags="short"))
##
## #######################
## # KPSS Unit Root Test #
## #######################
##
## Test is of type: tau with 3 lags.
##
## Value of test-statistic is: 0.1623
##
## Critical value for a significance level of:
## 10pct 5pct 2.5pct 1pct
## critical values 0.119 0.146 0.176 0.216
summary(ur.kpss(capital$LS4_C4,type="tau",lags="short"))
##
## #######################
## # KPSS Unit Root Test #
## #######################
##
## Test is of type: tau with 3 lags.
##
## Value of test-statistic is: 0.1981
##
## Critical value for a significance level of:
## 10pct 5pct 2.5pct 1pct
## critical values 0.119 0.146 0.176 0.216
summary(ur.kpss(capital$LX4_C4,type="tau",lags="short"))
##
## #######################
## # KPSS Unit Root Test #
## #######################
##
## Test is of type: tau with 3 lags.
##
## Value of test-statistic is: 0.1571
##
## Critical value for a significance level of:
## 10pct 5pct 2.5pct 1pct
## critical values 0.119 0.146 0.176 0.216
summary(ur.kpss(capital$LK4_N,type="mu",lags="short"))
##
## #######################
## # KPSS Unit Root Test #
## #######################
##
## Test is of type: mu with 3 lags.
##
## Value of test-statistic is: 0.5175
##
## Critical value for a significance level of:
## 10pct 5pct 2.5pct 1pct
## critical values 0.347 0.463 0.574 0.739
summary(ur.kpss(capital$LA4_K4,type="mu",lags="short"))
##
## #######################
## # KPSS Unit Root Test #
## #######################
##
## Test is of type: mu with 3 lags.
##
## Value of test-statistic is: 0.999
##
## Critical value for a significance level of:
## 10pct 5pct 2.5pct 1pct
## critical values 0.347 0.463 0.574 0.739
summary(ur.kpss(capital$LC4_A4,type="mu",lags="short"))
##
## #######################
## # KPSS Unit Root Test #
## #######################
##
## Test is of type: mu with 3 lags.
##
## Value of test-statistic is: 0.5412
##
## Critical value for a significance level of:
## 10pct 5pct 2.5pct 1pct
## critical values 0.347 0.463 0.574 0.739
summary(ur.kpss(capital$LI4_C4,type="mu",lags="short"))
##
## #######################
## # KPSS Unit Root Test #
## #######################
##
## Test is of type: mu with 3 lags.
##
## Value of test-statistic is: 0.2096
##
## Critical value for a significance level of:
## 10pct 5pct 2.5pct 1pct
## critical values 0.347 0.463 0.574 0.739
summary(ur.kpss(capital$LS4_C4,type="mu",lags="short"))
##
## #######################
## # KPSS Unit Root Test #
## #######################
##
## Test is of type: mu with 3 lags.
##
## Value of test-statistic is: 1.0753
##
## Critical value for a significance level of:
## 10pct 5pct 2.5pct 1pct
## critical values 0.347 0.463 0.574 0.739
summary(ur.kpss(capital$LX4_C4,type="mu",lags="short"))
##
## #######################
## # KPSS Unit Root Test #
## #######################
##
## Test is of type: mu with 3 lags.
##
## Value of test-statistic is: 0.897
##
## Critical value for a significance level of:
## 10pct 5pct 2.5pct 1pct
## critical values 0.347 0.463 0.574 0.739
summary(ur.kpss(diff(capital$LK4_N),type="tau",lags="short"))
##
## #######################
## # KPSS Unit Root Test #
## #######################
##
## Test is of type: tau with 3 lags.
##
## Value of test-statistic is: 0.1423
##
## Critical value for a significance level of:
## 10pct 5pct 2.5pct 1pct
## critical values 0.119 0.146 0.176 0.216
summary(ur.kpss(diff(capital$LA4_K4),type="tau",lags="short"))
##
## #######################
## # KPSS Unit Root Test #
## #######################
##
## Test is of type: tau with 3 lags.
##
## Value of test-statistic is: 0.0917
##
## Critical value for a significance level of:
## 10pct 5pct 2.5pct 1pct
## critical values 0.119 0.146 0.176 0.216
summary(ur.kpss(diff(capital$LC4_A4),type="tau",lags="short"))
##
## #######################
## # KPSS Unit Root Test #
## #######################
##
## Test is of type: tau with 3 lags.
##
## Value of test-statistic is: 0.0612
##
## Critical value for a significance level of:
## 10pct 5pct 2.5pct 1pct
## critical values 0.119 0.146 0.176 0.216
summary(ur.kpss(diff(capital$LI4_C4),type="tau",lags="short"))
##
## #######################
## # KPSS Unit Root Test #
## #######################
##
## Test is of type: tau with 3 lags.
##
## Value of test-statistic is: 0.0681
##
## Critical value for a significance level of:
## 10pct 5pct 2.5pct 1pct
## critical values 0.119 0.146 0.176 0.216
summary(ur.kpss(diff(capital$LS4_C4),type="tau",lags="short"))
##
## #######################
## # KPSS Unit Root Test #
## #######################
##
## Test is of type: tau with 3 lags.
##
## Value of test-statistic is: 0.0293
##
## Critical value for a significance level of:
## 10pct 5pct 2.5pct 1pct
## critical values 0.119 0.146 0.176 0.216
summary(ur.kpss(diff(capital$LX4_C4),type="tau",lags="short"))
##
## #######################
## # KPSS Unit Root Test #
## #######################
##
## Test is of type: tau with 3 lags.
##
## Value of test-statistic is: 0.0326
##
## Critical value for a significance level of:
## 10pct 5pct 2.5pct 1pct
## critical values 0.119 0.146 0.176 0.216
summary(ur.kpss(diff(capital$LK4_N),type="mu",lags="short"))
##
## #######################
## # KPSS Unit Root Test #
## #######################
##
## Test is of type: mu with 3 lags.
##
## Value of test-statistic is: 0.138
##
## Critical value for a significance level of:
## 10pct 5pct 2.5pct 1pct
## critical values 0.347 0.463 0.574 0.739
summary(ur.kpss(diff(capital$LA4_K4),type="mu",lags="short"))
##
## #######################
## # KPSS Unit Root Test #
## #######################
##
## Test is of type: mu with 3 lags.
##
## Value of test-statistic is: 0.1084
##
## Critical value for a significance level of:
## 10pct 5pct 2.5pct 1pct
## critical values 0.347 0.463 0.574 0.739
summary(ur.kpss(diff(capital$LC4_A4),type="mu",lags="short"))
##
## #######################
## # KPSS Unit Root Test #
## #######################
##
## Test is of type: mu with 3 lags.
##
## Value of test-statistic is: 0.0816
##
## Critical value for a significance level of:
## 10pct 5pct 2.5pct 1pct
## critical values 0.347 0.463 0.574 0.739
summary(ur.kpss(diff(capital$LI4_C4),type="mu",lags="short"))
##
## #######################
## # KPSS Unit Root Test #
## #######################
##
## Test is of type: mu with 3 lags.
##
## Value of test-statistic is: 0.1336
##
## Critical value for a significance level of:
## 10pct 5pct 2.5pct 1pct
## critical values 0.347 0.463 0.574 0.739
summary(ur.kpss(diff(capital$LS4_C4),type="mu",lags="short"))
##
## #######################
## # KPSS Unit Root Test #
## #######################
##
## Test is of type: mu with 3 lags.
##
## Value of test-statistic is: 0.092
##
## Critical value for a significance level of:
## 10pct 5pct 2.5pct 1pct
## critical values 0.347 0.463 0.574 0.739
summary(ur.kpss(diff(capital$LX4_C4),type="mu",lags="short"))
##
## #######################
## # KPSS Unit Root Test #
## #######################
##
## Test is of type: mu with 3 lags.
##
## Value of test-statistic is: 0.0596
##
## Critical value for a significance level of:
## 10pct 5pct 2.5pct 1pct
## critical values 0.347 0.463 0.574 0.739
dat_K4_1 <- capital[,c("LU_L","LK4_N","LA4_K4","LC4_A4","LI4_C4","LS4_C4","LX4_C4")]
dum <- capital[,c("Y1955","Y1972","Y2005")]
VARselect(dat_K4_1, lag.max=5, type="const", exogen=dum)
## $selection
## AIC(n) HQ(n) SC(n) FPE(n)
## 1 1 1 1
##
## $criteria
## 1 2 3 4 5
## AIC(n) -2.539298e+01 -2.463197e+01 -2.404783e+01 -2.361504e+01 -2.430604e+01
## HQ(n) -2.438353e+01 -2.298016e+01 -2.175365e+01 -2.067848e+01 -2.072710e+01
## SC(n) -2.283838e+01 -2.045172e+01 -1.824193e+01 -1.618349e+01 -1.524883e+01
## FPE(n) 9.583241e-12 2.215751e-11 4.752089e-11 1.033733e-10 9.549952e-11
rank_K4_const_1 <- ca.jo(dat_K4_1, ecdet=c("const"),type="trace",K=2,spec="longrun",dumvar=dum)
summary(rank_K4_const_1)
##
## ######################
## # Johansen-Procedure #
## ######################
##
## Test type: trace statistic , without linear trend and constant in cointegration
##
## Eigenvalues (lambda):
## [1] 6.559731e-01 4.176390e-01 3.732293e-01 3.099152e-01 2.360455e-01
## [6] 8.803051e-02 2.501138e-02 -5.933362e-16
##
## Values of teststatistic and critical values of test:
##
## test 10pct 5pct 1pct
## r <= 6 | 1.75 7.52 9.24 12.97
## r <= 5 | 8.11 17.85 19.96 24.60
## r <= 4 | 26.68 32.00 34.91 41.07
## r <= 3 | 52.28 49.65 53.12 60.16
## r <= 2 | 84.51 71.86 76.07 84.45
## r <= 1 | 121.82 97.18 102.14 111.01
## r = 0 | 195.45 126.58 131.70 143.09
##
## Eigenvectors, normalised to first column:
## (These are the cointegration relations)
##
## LU_L.l2 LK4_N.l2 LA4_K4.l2 LC4_A4.l2 LI4_C4.l2 LS4_C4.l2
## LU_L.l2 1.0000000 1.000000 1.000000000 1.0000000 1.0000000 1.00000000
## LK4_N.l2 -0.7633787 -6.391299 1.442850194 -1.6588591 -2.2668217 3.88587942
## LA4_K4.l2 0.6214023 -25.059805 1.777648446 -6.3620929 -1.1919151 17.63483288
## LC4_A4.l2 0.8658186 6.596472 -2.891706118 1.1811123 1.6214239 2.39613615
## LI4_C4.l2 -0.7558959 -22.114828 -0.340844706 -1.3672581 2.9390301 -0.02665562
## LS4_C4.l2 -0.4930297 11.456098 0.108523151 0.3947668 0.4111308 0.66443577
## LX4_C4.l2 -0.1345719 -5.077050 0.006060826 0.8510883 -0.1210375 -0.45566816
## constant -4.1075872 123.713870 1.974550574 25.8878111 -7.0581885 -90.31638326
## LX4_C4.l2 constant
## LU_L.l2 1.0000000 1.000000
## LK4_N.l2 -6.2356697 -1.739161
## LA4_K4.l2 -6.3737246 -35.125059
## LC4_A4.l2 -23.1768615 -6.297913
## LI4_C4.l2 0.1377409 2.742130
## LS4_C4.l2 -0.2060730 -1.029825
## LX4_C4.l2 1.0626976 1.321556
## constant 138.3460615 184.825540
##
## Weights W:
## (This is the loading matrix)
##
## LU_L.l2 LK4_N.l2 LA4_K4.l2 LC4_A4.l2 LI4_C4.l2
## LU_L.d -0.07654587 -0.0004480034 -0.02839327 -0.025986112 -0.032558038
## LK4_N.d 0.11241595 0.0002503249 0.04540905 0.014670703 0.005796459
## LA4_K4.d -0.06447764 0.0018165251 -0.03336651 0.007170122 0.001691396
## LC4_A4.d -0.12416726 -0.0041263579 0.08827012 -0.025227909 -0.025503238
## LI4_C4.d 0.18972108 0.0163018319 -0.02606956 0.104017751 -0.115811969
## LS4_C4.d 1.64785466 -0.0295001823 -0.13504648 -0.101205888 -0.089764443
## LX4_C4.d 0.15177255 0.0651001317 -0.21138314 -0.591048630 0.105474467
## LS4_C4.l2 LX4_C4.l2 constant
## LU_L.d 0.0007498904 0.0020510118 2.889056e-16
## LK4_N.d 0.0020707994 0.0022278772 2.198385e-15
## LA4_K4.d -0.0090838241 0.0001877385 4.048139e-15
## LC4_A4.d -0.0042259154 -0.0011838570 1.117836e-15
## LI4_C4.d 0.0033947640 -0.0013179631 2.604560e-14
## LS4_C4.d -0.0470183018 -0.0003867474 -3.239142e-14
## LX4_C4.d 0.0016535376 0.0028003634 -2.947397e-14
rank_K4_trend_1 <- ca.jo(dat_K4_1, ecdet=c("trend"),type="trace",K=2,spec="longrun",dumvar=dum)
summary(rank_K4_trend_1)
##
## ######################
## # Johansen-Procedure #
## ######################
##
## Test type: trace statistic , with linear trend in cointegration
##
## Eigenvalues (lambda):
## [1] 6.560762e-01 4.182975e-01 3.479068e-01 3.208137e-01 2.725254e-01
## [6] 1.813054e-01 3.193872e-02 1.693301e-17
##
## Values of teststatistic and critical values of test:
##
## test 10pct 5pct 1pct
## r <= 6 | 2.24 10.49 12.25 16.26
## r <= 5 | 16.04 22.76 25.32 30.45
## r <= 4 | 38.00 39.06 42.44 48.45
## r <= 3 | 64.69 59.14 62.99 70.05
## r <= 2 | 94.19 83.20 87.31 96.58
## r <= 1 | 131.58 110.42 114.90 124.75
## r = 0 | 205.22 141.01 146.76 158.49
##
## Eigenvectors, normalised to first column:
## (These are the cointegration relations)
##
## LU_L.l2 LK4_N.l2 LA4_K4.l2 LC4_A4.l2 LI4_C4.l2
## LU_L.l2 1.000000000 1.0000000 1.00000000 1.00000000 1.00000000
## LK4_N.l2 -0.760778238 -27.7592491 1.56373119 -0.52850803 -1.19867272
## LA4_K4.l2 0.752788153 -108.3912983 1.63991656 -1.93818834 -9.33664569
## LC4_A4.l2 0.965065430 61.0449086 -3.82543909 3.14474277 -3.05832493
## LI4_C4.l2 -0.768644470 -132.1021293 -0.28524537 -0.89627782 -2.74098819
## LS4_C4.l2 -0.498657753 74.2214071 -0.08951528 0.88488533 -0.32153806
## LX4_C4.l2 -0.135800391 -29.1759793 -0.11252956 1.30592806 0.40950809
## trend.l2 0.002375558 0.8662285 -0.02290114 0.08725219 -0.09055825
## LS4_C4.l2 LX4_C4.l2 trend.l2
## LU_L.l2 1.00000000 1.00000000 1.000000000
## LK4_N.l2 -1.54307933 0.88019421 0.006631826
## LA4_K4.l2 -5.10769637 2.33288525 4.885518860
## LC4_A4.l2 -1.52420171 1.30885953 -1.149810061
## LI4_C4.l2 0.43449231 -0.05908823 -0.439725012
## LS4_C4.l2 -0.05192552 0.10852771 0.163724198
## LX4_C4.l2 0.05381763 -0.23072374 -0.248383595
## trend.l2 -0.04875911 -0.04930501 -0.054704007
##
## Weights W:
## (This is the loading matrix)
##
## LU_L.l2 LK4_N.l2 LA4_K4.l2 LC4_A4.l2 LI4_C4.l2
## LU_L.d -0.07689673 -0.0001340966 -0.007709578 -0.018466026 0.01476587
## LK4_N.d 0.11240175 0.0001299907 0.035744015 0.020276004 -0.01530963
## LA4_K4.d -0.06458751 0.0002406082 -0.034253366 -0.006442816 0.01610107
## LC4_A4.d -0.12043580 -0.0006574796 0.106522939 -0.012050745 0.02280892
## LI4_C4.d 0.17890187 0.0025367830 -0.021279749 0.024227817 0.15707483
## LS4_C4.d 1.58586253 -0.0052891014 -0.043503378 -0.115916577 0.13198500
## LX4_C4.d 0.13443813 0.0101237493 -0.088226087 -0.341461636 -0.28080786
## LS4_C4.l2 LX4_C4.l2 trend.l2
## LU_L.d -0.0768062024 -0.019651269 2.334001e-14
## LK4_N.d -0.0133852528 -0.020034433 -2.821232e-14
## LA4_K4.d 0.0383584400 -0.004699274 9.548578e-15
## LC4_A4.d -0.0077228267 0.009296940 9.868233e-14
## LI4_C4.d -0.1510505707 0.012139385 -4.226426e-13
## LS4_C4.d 0.0414716074 -0.013604254 -5.326142e-13
## LX4_C4.d 0.0007542011 -0.026089988 -2.244985e-13
vecm_K4 <- cajorls(rank_K4_const_1, r=3)
print(vecm_K4)
## $rlm
##
## Call:
## lm(formula = substitute(form1), data = data.mat)
##
## Coefficients:
## LU_L.d LK4_N.d LA4_K4.d LC4_A4.d LI4_C4.d LS4_C4.d
## ect1 -0.105387 0.158075 -0.096028 -0.040024 0.179953 1.483308
## ect2 0.020330 -0.021897 -0.010532 0.248520 -0.286633 -1.264244
## ect3 -0.086812 0.144304 -0.144902 0.183161 -0.336970 1.523184
## Y1955 -0.025989 -0.043104 -0.008581 0.104687 -0.071707 -0.650867
## Y1972 0.137153 -0.056878 0.062868 0.166677 -0.235830 -1.930133
## Y2005 0.004488 -0.193506 0.078006 0.039598 -0.230276 -0.583895
## LU_L.dl1 0.165268 0.125937 -0.227323 0.184317 0.624526 0.321886
## LK4_N.dl1 0.248287 -0.089652 0.116766 0.272322 -0.209376 0.205218
## LA4_K4.dl1 -0.158433 -0.367154 -0.091505 0.440665 -0.487213 4.240481
## LC4_A4.dl1 -0.149772 -0.235426 0.132033 -0.462518 0.246989 1.910868
## LI4_C4.dl1 -0.011055 -0.140683 0.021083 0.125021 -0.887378 -0.336371
## LS4_C4.dl1 0.050404 -0.016255 0.016751 0.019205 0.130987 -1.129958
## LX4_C4.dl1 0.008233 -0.012282 0.001646 0.040373 -0.038316 -0.032347
## LX4_C4.d
## ect1 0.005490
## ect2 -0.836929
## ect3 -1.912850
## Y1955 -0.097909
## Y1972 -0.398633
## Y2005 -0.104716
## LU_L.dl1 0.244727
## LK4_N.dl1 -0.285533
## LA4_K4.dl1 3.386827
## LC4_A4.dl1 2.480289
## LI4_C4.dl1 -0.536461
## LS4_C4.dl1 0.518489
## LX4_C4.dl1 -0.598659
##
##
## $beta
## ect1 ect2 ect3
## LU_L.l2 1.000000e+00 0.0000000 0.000000e+00
## LK4_N.l2 0.000000e+00 1.0000000 -5.551115e-17
## LA4_K4.l2 -1.110223e-16 0.0000000 1.000000e+00
## LC4_A4.l2 -6.075316e-01 -1.7920097 1.695650e-01
## LI4_C4.l2 -1.524495e+00 -0.2798960 8.930330e-01
## LS4_C4.l2 3.210171e-01 0.5835283 -5.931644e-01
## LX4_C4.l2 -2.918869e-01 -0.0419351 2.016449e-01
## constant 4.437890e+00 6.0614448 -6.305575e+00
print(coef(summary(vecm_K4$rlm)),digits=3)
## Response LU_L.d :
## Estimate Std. Error t value Pr(>|t|)
## ect1 -0.10539 0.0577 -1.8258 0.0732
## ect2 0.02033 0.0561 0.3621 0.7186
## ect3 -0.08681 0.0788 -1.1019 0.2752
## Y1955 -0.02599 0.0330 -0.7875 0.4343
## Y1972 0.13715 0.0692 1.9806 0.0526
## Y2005 0.00449 0.0497 0.0902 0.9284
## LU_L.dl1 0.16527 0.1527 1.0824 0.2837
## LK4_N.dl1 0.24829 0.2048 1.2124 0.2304
## LA4_K4.dl1 -0.15843 0.2774 -0.5712 0.5701
## LC4_A4.dl1 -0.14977 0.1623 -0.9229 0.3600
## LI4_C4.dl1 -0.01105 0.0484 -0.2284 0.8202
## LS4_C4.dl1 0.05040 0.0252 2.0011 0.0502
## LX4_C4.dl1 0.00823 0.0163 0.5035 0.6166
##
## Response LK4_N.d :
## Estimate Std. Error t value Pr(>|t|)
## ect1 0.1581 0.0515 3.071 3.29e-03
## ect2 -0.0219 0.0501 -0.437 6.64e-01
## ect3 0.1443 0.0703 2.054 4.47e-02
## Y1955 -0.0431 0.0294 -1.465 1.49e-01
## Y1972 -0.0569 0.0618 -0.921 3.61e-01
## Y2005 -0.1935 0.0444 -4.363 5.57e-05
## LU_L.dl1 0.1259 0.1362 0.925 3.59e-01
## LK4_N.dl1 -0.0897 0.1826 -0.491 6.25e-01
## LA4_K4.dl1 -0.3672 0.2473 -1.484 1.43e-01
## LC4_A4.dl1 -0.2354 0.1447 -1.627 1.09e-01
## LI4_C4.dl1 -0.1407 0.0432 -3.259 1.90e-03
## LS4_C4.dl1 -0.0163 0.0225 -0.724 4.72e-01
## LX4_C4.dl1 -0.0123 0.0146 -0.842 4.03e-01
##
## Response LA4_K4.d :
## Estimate Std. Error t value Pr(>|t|)
## ect1 -0.09603 0.02828 -3.396 0.001265
## ect2 -0.01053 0.02751 -0.383 0.703242
## ect3 -0.14490 0.03860 -3.754 0.000415
## Y1955 -0.00858 0.01617 -0.531 0.597713
## Y1972 0.06287 0.03393 1.853 0.069147
## Y2005 0.07801 0.02437 3.201 0.002255
## LU_L.dl1 -0.22732 0.07481 -3.039 0.003605
## LK4_N.dl1 0.11677 0.10033 1.164 0.249427
## LA4_K4.dl1 -0.09151 0.13588 -0.673 0.503449
## LC4_A4.dl1 0.13203 0.07951 1.661 0.102377
## LI4_C4.dl1 0.02108 0.02371 0.889 0.377725
## LS4_C4.dl1 0.01675 0.01234 1.357 0.180093
## LX4_C4.dl1 0.00165 0.00801 0.205 0.837936
##
## Response LC4_A4.d :
## Estimate Std. Error t value Pr(>|t|)
## ect1 -0.0400 0.0571 -0.701 4.86e-01
## ect2 0.2485 0.0556 4.474 3.81e-05
## ect3 0.1832 0.0780 2.350 2.23e-02
## Y1955 0.1047 0.0327 3.206 2.23e-03
## Y1972 0.1667 0.0685 2.433 1.82e-02
## Y2005 0.0396 0.0492 0.805 4.24e-01
## LU_L.dl1 0.1843 0.1511 1.220 2.28e-01
## LK4_N.dl1 0.2723 0.2026 1.344 1.84e-01
## LA4_K4.dl1 0.4407 0.2744 1.606 1.14e-01
## LC4_A4.dl1 -0.4625 0.1606 -2.880 5.62e-03
## LI4_C4.dl1 0.1250 0.0479 2.611 1.16e-02
## LS4_C4.dl1 0.0192 0.0249 0.771 4.44e-01
## LX4_C4.dl1 0.0404 0.0162 2.496 1.55e-02
##
## Response LI4_C4.d :
## Estimate Std. Error t value Pr(>|t|)
## ect1 0.1800 0.1568 1.147 2.56e-01
## ect2 -0.2866 0.1525 -1.879 6.55e-02
## ect3 -0.3370 0.2141 -1.574 1.21e-01
## Y1955 -0.0717 0.0897 -0.800 4.27e-01
## Y1972 -0.2358 0.1882 -1.253 2.15e-01
## Y2005 -0.2303 0.1351 -1.704 9.39e-02
## LU_L.dl1 0.6245 0.4149 1.505 1.38e-01
## LK4_N.dl1 -0.2094 0.5564 -0.376 7.08e-01
## LA4_K4.dl1 -0.4872 0.7536 -0.647 5.21e-01
## LC4_A4.dl1 0.2470 0.4410 0.560 5.78e-01
## LI4_C4.dl1 -0.8874 0.1315 -6.748 9.03e-09
## LS4_C4.dl1 0.1310 0.0684 1.914 6.07e-02
## LX4_C4.dl1 -0.0383 0.0444 -0.863 3.92e-01
##
## Response LS4_C4.d :
## Estimate Std. Error t value Pr(>|t|)
## ect1 1.4833 0.2750 5.394 1.44e-06
## ect2 -1.2642 0.2675 -4.727 1.58e-05
## ect3 1.5232 0.3753 4.058 1.55e-04
## Y1955 -0.6509 0.1572 -4.140 1.18e-04
## Y1972 -1.9301 0.3299 -5.851 2.66e-07
## Y2005 -0.5839 0.2369 -2.464 1.68e-02
## LU_L.dl1 0.3219 0.7274 0.443 6.60e-01
## LK4_N.dl1 0.2052 0.9756 0.210 8.34e-01
## LA4_K4.dl1 4.2405 1.3213 3.209 2.20e-03
## LC4_A4.dl1 1.9109 0.7731 2.472 1.65e-02
## LI4_C4.dl1 -0.3364 0.2306 -1.459 1.50e-01
## LS4_C4.dl1 -1.1300 0.1200 -9.417 3.85e-13
## LX4_C4.dl1 -0.0323 0.0779 -0.415 6.80e-01
##
## Response LX4_C4.d :
## Estimate Std. Error t value Pr(>|t|)
## ect1 0.00549 0.492 0.0112 9.91e-01
## ect2 -0.83693 0.479 -1.7484 8.59e-02
## ect3 -1.91285 0.672 -2.8477 6.15e-03
## Y1955 -0.09791 0.281 -0.3480 7.29e-01
## Y1972 -0.39863 0.590 -0.6751 5.02e-01
## Y2005 -0.10472 0.424 -0.2469 8.06e-01
## LU_L.dl1 0.24473 1.302 0.1880 8.52e-01
## LK4_N.dl1 -0.28553 1.746 -0.1635 8.71e-01
## LA4_K4.dl1 3.38683 2.365 1.4322 1.58e-01
## LC4_A4.dl1 2.48029 1.384 1.7925 7.85e-02
## LI4_C4.dl1 -0.53646 0.413 -1.3000 1.99e-01
## LS4_C4.dl1 0.51849 0.215 2.4143 1.91e-02
## LX4_C4.dl1 -0.59866 0.139 -4.2945 7.03e-05
var_K4_1 <- vec2var(rank_K4_const_1,r=3)
normality.test(var_K4_1)
## $JB
##
## JB-Test (multivariate)
##
## data: Residuals of VAR object var_K4_1
## Chi-squared = 14.812, df = 14, p-value = 0.3912
##
##
## $Skewness
##
## Skewness only (multivariate)
##
## data: Residuals of VAR object var_K4_1
## Chi-squared = 7.0819, df = 7, p-value = 0.4204
##
##
## $Kurtosis
##
## Kurtosis only (multivariate)
##
## data: Residuals of VAR object var_K4_1
## Chi-squared = 7.7296, df = 7, p-value = 0.357
serial.test(var_K4_1)
##
## Portmanteau Test (asymptotic)
##
## data: Residuals of VAR object var_K4_1
## Chi-squared = 675.76, df = 693, p-value = 0.6733
arch.test(var_K4_1)
##
## ARCH (multivariate)
##
## data: Residuals of VAR object var_K4_1
## Chi-squared = 1792, df = 3920, p-value = 1
cirf_LU_L_1 <- irf(var_K4_1, impulse=c("LU_L"), response=c("LK4_N"), cumulative=T, n.ahead=10, ci=0.95, runs=10000, seed=1)
cirf_LK4_N <- irf(var_K4_1, impulse=c("LK4_N"), response=c("LK4_N"), cumulative=T, n.ahead=10, ci=0.95, runs=10000, seed=1)
cirf_LA4_K4 <- irf(var_K4_1, impulse=c("LA4_K4"), response=c("LK4_N"), cumulative=T, n.ahead=10, ci=0.95, runs=10000, seed=1)
cirf_LC4_A4 <- irf(var_K4_1, impulse=c("LC4_A4"), response=c("LK4_N"), cumulative=T, n.ahead=10, ci=0.95, runs=10000, seed=1)
cirf_LI4_C4 <- irf(var_K4_1, impulse=c("LI4_C4"), response=c("LK4_N"), cumulative=T, n.ahead=10, ci=0.95, runs=10000, seed=1)
cirf_LS4_C4 <- irf(var_K4_1, impulse=c("LS4_C4"), response=c("LK4_N"), cumulative=T, n.ahead=10, ci=0.95, runs=10000, seed=1)
cirf_LX4_C4 <- irf(var_K4_1, impulse=c("LX4_C4"), response=c("LK4_N"), cumulative=T, n.ahead=10, ci=0.95, runs=10000, seed=1)
plot(cirf_LU_L_1)
plot(cirf_LK4_N)
plot(cirf_LA4_K4)
plot(cirf_LC4_A4)
plot(cirf_LI4_C4)
plot(cirf_LS4_C4)
plot(cirf_LX4_C4)
fevd_K4 <- fevd(var_K4_1,n.ahead=10)
par(mar = c(4, 4, 1, 1))
plot(fevd_K4$LK4_N[,1]*100,type="o",pch=1,ylim=c(0,22),xlab="",ylab="",axes = FALSE)
axis(1)
axis(2)
par(new=T)
plot(fevd_K4$LK4_N[,3]*100,type="o",pch=3,ylim=c(0,22),xlab="",ylab="",axes = FALSE)
par(new=T)
plot(fevd_K4$LK4_N[,4]*100,type="o",pch=6,ylim=c(0,22),xlab="",ylab="",axes = FALSE)
par(new=T)
plot(fevd_K4$LK4_N[,5]*100,type="o",pch=5,ylim=c(0,22),xlab="",ylab="",axes = FALSE)
par(new=T)
plot(fevd_K4$LK4_N[,6]*100,type="o",pch=15,ylim=c(0,22),xlab="",ylab="",axes = FALSE)
par(new=T)
plot(fevd_K4$LK4_N[,7]*100,type="o",pch=4,ylim=c(0,22),xlab="",ylab="",axes = FALSE)
box()
legend("topright", legend = c("Unemployment", "Life Sentence", "Conviction", "Death Sentence", "Execution", "Clearance"), pch = c(1,5,6,15,4,3), cex=0.72)
mtext("%",at=0.4)