データの読み込み

capital <- read.csv("data/capitalkuma.csv", header=T)

※以下で記載されているアウトライン番号やページ数は論文中のもの

1. 松村・竹内 (1990)の研究

変数の作成

capital$K1_N14 <- capital$K1/capital$N14*100
capital$A1_K1 <- capital$A1/capital$K1*100
capital$S1_C1 <- capital$S1/capital$C1*100
capital$U_L <- capital$U/capital$L*100
capital$I_CP <- (capital$I/capital$I[capital$YEAR==2015])/(capital$CP/capital$CP[capital$YEAR==2015])*100 # 基準値を2015年に
capital$P_N <- capital$P/capital$N #「人口千人につき」という形
capital$M2029_N <- capital$M2029/capital$N*100
capital$E1_N <- capital$E1/(capital$N*1000)*100 # Nが千人なので1000倍している

データの年代を松村・竹内(1990)にそろえる

matsu <- subset(capital, 1953<=YEAR & YEAR<=1987)

1.2 分析の再現

1.2.1 基本的な分析の再現

表1-3 松村・竹内(1990)の再現データの記述統計 (p.440)

library(RcmdrMisc)
matsu_sum <- numSummary(matsu[,c("K1_N14","A1_K1","S1_C1","I_CP","U_L","P_N","M2029_N","E1_N"),drop=F],statistics=c("mean", "sd", "quantiles"), quantiles=c(0,.5,1))
matsu_sum1 <- cbind(matsu_sum$table,matsu_sum$n)
print(round(matsu_sum1,3))
##           mean     sd     0%    50%    100%   
## K1_N14   2.593  0.893  1.512  2.257   4.634 35
## A1_K1   97.451  0.671 95.906 97.569  98.710 35
## S1_C1    0.970  0.598  0.221  0.830   2.545 35
## I_CP    65.700 23.217 30.734 67.109 101.128 35
## U_L      1.852  0.556  1.118  1.880   2.844 35
## P_N     14.830  3.313 10.356 12.961  22.084 35
## M2029_N  8.411  0.941  6.607  8.891   9.477 35
## E1_N     1.410  0.516  0.587  1.625   1.963 35

表1-4 松村・竹内(1990)の再現データでの回帰分析 (p.440)

matsu_ols <- lm(K1_N14~A1_K1+S1_C1+I_CP+U_L+P_N+M2029_N+E1_N,data=matsu)
library(memisc) #表示を整える
matsu_model <- mtable("1"=matsu_ols,coef.style="stat",signif.symbols=c("***"=.01,"**"=.05, "*"=.1),summary.stats=c("adj. R-squared","N"))
print(matsu_model)
## 
## Calls:
## 1: lm(formula = K1_N14 ~ A1_K1 + S1_C1 + I_CP + U_L + P_N + M2029_N + 
##     E1_N, data = matsu)
## 
## ==============================
##   (Intercept)      -7.068*    
##                   (-1.775)    
##   A1_K1             0.037     
##                    (0.895)    
##   S1_C1             0.086     
##                    (1.169)    
##   I_CP             -0.000     
##                   (-0.023)    
##   U_L               0.488***  
##                    (5.944)    
##   P_N               0.158***  
##                    (4.285)    
##   M2029_N           0.371***  
##                    (4.863)    
##   E1_N             -0.290     
##                   (-1.005)    
## ------------------------------
##   adj. R-squared    0.974     
##   N                35         
## ==============================
##   Significance:   
##                 *** = p < 0.01;   
##                 ** = p < 0.05;   
##                 * = p < 0.1

ダービン・ワトソン比

library(lmtest)
dwtest(matsu_ols)
## 
##  Durbin-Watson test
## 
## data:  matsu_ols
## DW = 1.4282, p-value = 0.004377
## alternative hypothesis: true autocorrelation is greater than 0

1.2.2 対数変換とラグ

変数の準備(対数変換等)

matsu$S1_C1_LAG <- c(NA,matsu$S1_C1[1:length(matsu$S1_C1)-1])
matsu$LK1_N14 <- log(matsu$K1_N14)
matsu$LA1_K1 <- log(matsu$A1_K1)
matsu$LS1_C1 <- log(matsu$S1_C1)
matsu$LI_CP <- log(matsu$I_CP)
matsu$LU_L <- log(matsu$U_L)
matsu$LP_N <- log(matsu$P_N)
matsu$LM2029_N <- log(matsu$M2029_N)
matsu$LE1_N <- log(matsu$E1_N)
matsu$LS1_C1_LAG <- log(matsu$S1_C1_LAG)

表1-5 松村・竹内(1990)の再現データでの回帰分析(対数変換・ラグ) (p.440)

表1-5のうち「(2)線形ラグ」

matsu_lag_ols <- lm(K1_N14~A1_K1+S1_C1_LAG+I_CP+U_L+P_N+M2029_N+E1_N,data=matsu)
matsu_lag_model <- mtable("1"=matsu_lag_ols,coef.style="stat",signif.symbols=c("***"=.01,"**"=.05, "*"=.1),summary.stats=c("adj. R-squared","N"))
print(matsu_lag_model)
## 
## Calls:
## 1: lm(formula = K1_N14 ~ A1_K1 + S1_C1_LAG + I_CP + U_L + P_N + 
##     M2029_N + E1_N, data = matsu)
## 
## ==============================
##   (Intercept)      -6.046     
##                   (-1.540)    
##   A1_K1             0.043     
##                    (1.041)    
##   S1_C1_LAG        -0.101     
##                   (-1.271)    
##   I_CP             -0.011     
##                   (-0.999)    
##   U_L               0.592***  
##                    (6.585)    
##   P_N               0.116**   
##                    (2.666)    
##   M2029_N           0.336***  
##                    (4.406)    
##   E1_N             -0.296     
##                   (-1.032)    
## ------------------------------
##   adj. R-squared    0.972     
##   N                34         
## ==============================
##   Significance:   
##                 *** = p < 0.01;   
##                 ** = p < 0.05;   
##                 * = p < 0.1

表1-5のうち「(1)対数」と「(3)対数ラグ」

matsu_log_ols <- lm(LK1_N14~LA1_K1+LS1_C1+LI_CP+LU_L+LP_N+LM2029_N+LE1_N,data=matsu)
matsu_laglog_ols <- lm(LK1_N14~LA1_K1+LS1_C1_LAG+LI_CP+LU_L+LP_N+LM2029_N+LE1_N,data=matsu)
matsu_log_model <- mtable("1"=matsu_log_ols,"2"=matsu_laglog_ols,coef.style="stat",signif.symbols=c("***"=.01,"**"=.05, "*"=.1),summary.stats=c("adj. R-squared","N"))
print(matsu_log_model)
## 
## Calls:
## 1: lm(formula = LK1_N14 ~ LA1_K1 + LS1_C1 + LI_CP + LU_L + LP_N + 
##     LM2029_N + LE1_N, data = matsu)
## 2: lm(formula = LK1_N14 ~ LA1_K1 + LS1_C1_LAG + LI_CP + LU_L + LP_N + 
##     LM2029_N + LE1_N, data = matsu)
## 
## ==========================================
##                       1           2       
## ------------------------------------------
##   (Intercept)      -2.771      -1.777     
##                   (-0.505)    (-0.332)    
##   LA1_K1            0.065      -0.003     
##                    (0.053)    (-0.003)    
##   LS1_C1            0.000                 
##                    (0.007)                
##   LI_CP            -0.107      -0.201     
##                   (-0.541)    (-1.008)    
##   LU_L              0.209***    0.211***  
##                    (5.275)     (5.433)    
##   LP_N              0.589***    0.525**   
##                    (2.854)     (2.544)    
##   LM2029_N          1.025***    0.962***  
##                    (5.941)     (5.644)    
##   LE1_N            -0.216*     -0.205*    
##                   (-1.943)    (-1.881)    
##   LS1_C1_LAG                   -0.028     
##                               (-1.436)    
## ------------------------------------------
##   adj. R-squared    0.982       0.982     
##   N                35          34         
## ==========================================
##   Significance: *** = p < 0.01;   
##                 ** = p < 0.05;   
##                 * = p < 0.1

1.3 分析の問題点

1.3.1 系列相関への対処

注21:分散不均一性の検定 (p.353)

bptest(matsu_ols)
## 
##  studentized Breusch-Pagan test
## 
## data:  matsu_ols
## BP = 13.604, df = 7, p-value = 0.0587

1.3.2 多重共線性への対処

表1-6 松村・竹内(1990)の再現データでの説明変数同士の相関 (p.406)

matsu_cor <- cor(matsu[,c("A1_K1","S1_C1","I_CP","U_L","P_N","M2029_N","E1_N")]) 
print(matsu_cor,digits=3)
##           A1_K1   S1_C1   I_CP     U_L    P_N M2029_N   E1_N
## A1_K1    1.0000  0.2739 -0.372 -0.0308  0.430   0.204 -0.401
## S1_C1    0.2739  1.0000 -0.735  0.0549  0.778   0.299 -0.780
## I_CP    -0.3724 -0.7348  1.000  0.3871 -0.943  -0.717  0.960
## U_L     -0.0308  0.0549  0.387  1.0000 -0.145  -0.749  0.200
## P_N      0.4295  0.7783 -0.943 -0.1448  1.000   0.503 -0.962
## M2029_N  0.2042  0.2989 -0.717 -0.7493  0.503   1.000 -0.535
## E1_N    -0.4008 -0.7799  0.960  0.2003 -0.962  -0.535  1.000

表1-7 松村・竹内 (1990)の再現データでのVIF (p.406)

library(car)
matsu_ols_vif <- vif(matsu_ols)
print(matsu_ols_vif)
##     A1_K1     S1_C1      I_CP       U_L       P_N   M2029_N      E1_N 
##  1.295816  3.195856 94.295652  3.476174 24.941617  8.607538 36.825657

1.3.4 単位根の存在

表1-8 松村・竹内(1990)の再現データのADF検定 (p.403)

トレンドと定数項

library(CADFtest)
CADFtest(matsu$K1_N14, type="trend", max.lag.y=4, criterion="MAIC")
## 
##  ADF test
## 
## data:  matsu$K1_N14
## ADF(2) = -1.4878, p-value = 0.8114
## alternative hypothesis: true delta is less than 0
## sample estimates:
##      delta 
## -0.1526712
CADFtest(matsu$A1_K1, type="trend", max.lag.y=4, criterion="MAIC")
## 
##  ADF test
## 
## data:  matsu$A1_K1
## ADF(0) = -4.9915, p-value = 0.001881
## alternative hypothesis: true delta is less than 0
## sample estimates:
##      delta 
## -0.9294526
CADFtest(matsu$S1_C1, type="trend", max.lag.y=4, criterion="MAIC")
## 
##  ADF test
## 
## data:  matsu$S1_C1
## ADF(3) = -1.8899, p-value = 0.6347
## alternative hypothesis: true delta is less than 0
## sample estimates:
##     delta 
## -0.446498
CADFtest(matsu$I_CP, type="trend", max.lag.y=4, criterion="MAIC")
## 
##  ADF test
## 
## data:  matsu$I_CP
## ADF(0) = -1.1427, p-value = 0.9043
## alternative hypothesis: true delta is less than 0
## sample estimates:
##     delta 
## -0.114328
CADFtest(matsu$U_L, type="trend", max.lag.y=4, criterion="MAIC")
## 
##  ADF test
## 
## data:  matsu$U_L
## ADF(2) = -1.668, p-value = 0.7404
## alternative hypothesis: true delta is less than 0
## sample estimates:
##   delta 
## -0.1239
CADFtest(matsu$P_N, type="trend", max.lag.y=4, criterion="MAIC")
## 
##  ADF test
## 
## data:  matsu$P_N
## ADF(2) = -1.1861, p-value = 0.8954
## alternative hypothesis: true delta is less than 0
## sample estimates:
##       delta 
## -0.08833341
CADFtest(matsu$M2029_N, type="trend", max.lag.y=4, criterion="MAIC")
## 
##  ADF test
## 
## data:  matsu$M2029_N
## ADF(2) = -1.5467, p-value = 0.7899
## alternative hypothesis: true delta is less than 0
## sample estimates:
##       delta 
## -0.07461354
CADFtest(matsu$E1_N, type="trend", max.lag.y=4, criterion="MAIC")
## 
##  ADF test
## 
## data:  matsu$E1_N
## ADF(2) = -1.9471, p-value = 0.6054
## alternative hypothesis: true delta is less than 0
## sample estimates:
##      delta 
## -0.0596375

定数項

CADFtest(matsu$K1_N14, type="drift", max.lag.y=4, criterion="MAIC")
## 
##  ADF test
## 
## data:  matsu$K1_N14
## ADF(0) = -1.3596, p-value = 0.5883
## alternative hypothesis: true delta is less than 0
## sample estimates:
##       delta 
## -0.04780755
CADFtest(matsu$A1_K1, type="drift", max.lag.y=4, criterion="MAIC")
## 
##  ADF test
## 
## data:  matsu$A1_K1
## ADF(0) = -4.6919, p-value = 0.0007476
## alternative hypothesis: true delta is less than 0
## sample estimates:
##      delta 
## -0.8616541
CADFtest(matsu$S1_C1, type="drift", max.lag.y=4, criterion="MAIC")
## 
##  ADF test
## 
## data:  matsu$S1_C1
## ADF(2) = -3.1176, p-value = 0.0359
## alternative hypothesis: true delta is less than 0
## sample estimates:
##      delta 
## -0.4421995
CADFtest(matsu$I_CP, type="drift", max.lag.y=4, criterion="MAIC")
## 
##  ADF test
## 
## data:  matsu$I_CP
## ADF(0) = -0.88366, p-value = 0.7795
## alternative hypothesis: true delta is less than 0
## sample estimates:
##       delta 
## -0.01200555
CADFtest(matsu$U_L, type="drift", max.lag.y=4, criterion="MAIC")
## 
##  ADF test
## 
## data:  matsu$U_L
## ADF(3) = -0.73543, p-value = 0.8226
## alternative hypothesis: true delta is less than 0
## sample estimates:
##       delta 
## -0.05199654
CADFtest(matsu$P_N, type="drift", max.lag.y=4, criterion="MAIC")
## 
##  ADF test
## 
## data:  matsu$P_N
## ADF(3) = -0.37319, p-value = 0.9016
## alternative hypothesis: true delta is less than 0
## sample estimates:
##       delta 
## -0.01129573
CADFtest(matsu$M2029_N, type="drift", max.lag.y=4, criterion="MAIC")
## 
##  ADF test
## 
## data:  matsu$M2029_N
## ADF(2) = -0.54812, p-value = 0.8677
## alternative hypothesis: true delta is less than 0
## sample estimates:
##       delta 
## -0.01864944
CADFtest(matsu$E1_N, type="drift", max.lag.y=4, criterion="MAIC")
## 
##  ADF test
## 
## data:  matsu$E1_N
## ADF(2) = -1.6329, p-value = 0.4539
## alternative hypothesis: true delta is less than 0
## sample estimates:
##       delta 
## -0.01606601

どちらもなし

CADFtest(matsu$K1_N14, type="none", max.lag.y=4, criterion="MAIC")
## 
##  ADF test
## 
## data:  matsu$K1_N14
## ADF(0) = -3.3297, p-value = 0.00165
## alternative hypothesis: true delta is less than 0
## sample estimates:
##       delta 
## -0.02984538
CADFtest(matsu$A1_K1, type="none", max.lag.y=4, criterion="MAIC")
## 
##  ADF test
## 
## data:  matsu$A1_K1
## ADF(3) = -0.39817, p-value = 0.5318
## alternative hypothesis: true delta is less than 0
## sample estimates:
##         delta 
## -0.0005409986
CADFtest(matsu$S1_C1, type="none", max.lag.y=4, criterion="MAIC")
## 
##  ADF test
## 
## data:  matsu$S1_C1
## ADF(1) = -2.4983, p-value = 0.01434
## alternative hypothesis: true delta is less than 0
## sample estimates:
##      delta 
## -0.1749909
CADFtest(matsu$I_CP, type="none", max.lag.y=4, criterion="MAIC")
## 
##  ADF test
## 
## data:  matsu$I_CP
## ADF(3) = 1.2018, p-value = 0.9375
## alternative hypothesis: true delta is less than 0
## sample estimates:
##     delta 
## 0.0108353
CADFtest(matsu$U_L, type="none", max.lag.y=4, criterion="MAIC")
## 
##  ADF test
## 
## data:  matsu$U_L
## ADF(3) = 0.49158, p-value = 0.8156
## alternative hypothesis: true delta is less than 0
## sample estimates:
##       delta 
## 0.008961667
CADFtest(matsu$P_N, type="none", max.lag.y=4, criterion="MAIC")
## 
##  ADF test
## 
## data:  matsu$P_N
## ADF(3) = -1.7247, p-value = 0.08
## alternative hypothesis: true delta is less than 0
## sample estimates:
##       delta 
## -0.01112568
CADFtest(matsu$M2029_N, type="none", max.lag.y=4, criterion="MAIC")
## 
##  ADF test
## 
## data:  matsu$M2029_N
## ADF(1) = -0.97612, p-value = 0.287
## alternative hypothesis: true delta is less than 0
## sample estimates:
##      delta 
## -0.0033662
CADFtest(matsu$E1_N, type="none", max.lag.y=4, criterion="MAIC")
## 
##  ADF test
## 
## data:  matsu$E1_N
## ADF(1) = 0.65028, p-value = 0.8511
## alternative hypothesis: true delta is less than 0
## sample estimates:
##       delta 
## 0.002364882

表1-9 松村・竹内(1990)の再現データのKPSS検定 (p.402)

トレンドと定数項

library(urca)
summary(ur.kpss(matsu$K1_N14,type="tau",lags="short"))
## 
## ####################### 
## # KPSS Unit Root Test # 
## ####################### 
## 
## Test is of type: tau with 3 lags. 
## 
## Value of test-statistic is: 0.2335 
## 
## Critical value for a significance level of: 
##                 10pct  5pct 2.5pct  1pct
## critical values 0.119 0.146  0.176 0.216
summary(ur.kpss(matsu$A1_K1,type="tau",lags="short"))
## 
## ####################### 
## # KPSS Unit Root Test # 
## ####################### 
## 
## Test is of type: tau with 3 lags. 
## 
## Value of test-statistic is: 0.0765 
## 
## Critical value for a significance level of: 
##                 10pct  5pct 2.5pct  1pct
## critical values 0.119 0.146  0.176 0.216
summary(ur.kpss(matsu$S1_C1,type="tau",lags="short"))
## 
## ####################### 
## # KPSS Unit Root Test # 
## ####################### 
## 
## Test is of type: tau with 3 lags. 
## 
## Value of test-statistic is: 0.2057 
## 
## Critical value for a significance level of: 
##                 10pct  5pct 2.5pct  1pct
## critical values 0.119 0.146  0.176 0.216
summary(ur.kpss(matsu$I_CP,type="tau",lags="short"))
## 
## ####################### 
## # KPSS Unit Root Test # 
## ####################### 
## 
## Test is of type: tau with 3 lags. 
## 
## Value of test-statistic is: 0.1182 
## 
## Critical value for a significance level of: 
##                 10pct  5pct 2.5pct  1pct
## critical values 0.119 0.146  0.176 0.216
summary(ur.kpss(matsu$U_L,type="tau",lags="short"))
## 
## ####################### 
## # KPSS Unit Root Test # 
## ####################### 
## 
## Test is of type: tau with 3 lags. 
## 
## Value of test-statistic is: 0.2334 
## 
## Critical value for a significance level of: 
##                 10pct  5pct 2.5pct  1pct
## critical values 0.119 0.146  0.176 0.216
summary(ur.kpss(matsu$P_N,type="tau",lags="short"))
## 
## ####################### 
## # KPSS Unit Root Test # 
## ####################### 
## 
## Test is of type: tau with 3 lags. 
## 
## Value of test-statistic is: 0.1961 
## 
## Critical value for a significance level of: 
##                 10pct  5pct 2.5pct  1pct
## critical values 0.119 0.146  0.176 0.216
summary(ur.kpss(matsu$M2029_N,type="tau",lags="short"))
## 
## ####################### 
## # KPSS Unit Root Test # 
## ####################### 
## 
## Test is of type: tau with 3 lags. 
## 
## Value of test-statistic is: 0.2161 
## 
## Critical value for a significance level of: 
##                 10pct  5pct 2.5pct  1pct
## critical values 0.119 0.146  0.176 0.216
summary(ur.kpss(matsu$E1_N,type="tau",lags="short"))
## 
## ####################### 
## # KPSS Unit Root Test # 
## ####################### 
## 
## Test is of type: tau with 3 lags. 
## 
## Value of test-statistic is: 0.1928 
## 
## Critical value for a significance level of: 
##                 10pct  5pct 2.5pct  1pct
## critical values 0.119 0.146  0.176 0.216

定数項

summary(ur.kpss(matsu$K1_N14,type="mu",lags="short"))
## 
## ####################### 
## # KPSS Unit Root Test # 
## ####################### 
## 
## Test is of type: mu with 3 lags. 
## 
## Value of test-statistic is: 0.9135 
## 
## Critical value for a significance level of: 
##                 10pct  5pct 2.5pct  1pct
## critical values 0.347 0.463  0.574 0.739
summary(ur.kpss(matsu$A1_K1,type="mu",lags="short"))
## 
## ####################### 
## # KPSS Unit Root Test # 
## ####################### 
## 
## Test is of type: mu with 3 lags. 
## 
## Value of test-statistic is: 0.4367 
## 
## Critical value for a significance level of: 
##                 10pct  5pct 2.5pct  1pct
## critical values 0.347 0.463  0.574 0.739
summary(ur.kpss(matsu$S1_C1,type="mu",lags="short"))
## 
## ####################### 
## # KPSS Unit Root Test # 
## ####################### 
## 
## Test is of type: mu with 3 lags. 
## 
## Value of test-statistic is: 0.7456 
## 
## Critical value for a significance level of: 
##                 10pct  5pct 2.5pct  1pct
## critical values 0.347 0.463  0.574 0.739
summary(ur.kpss(matsu$I_CP,type="mu",lags="short"))
## 
## ####################### 
## # KPSS Unit Root Test # 
## ####################### 
## 
## Test is of type: mu with 3 lags. 
## 
## Value of test-statistic is: 0.9717 
## 
## Critical value for a significance level of: 
##                 10pct  5pct 2.5pct  1pct
## critical values 0.347 0.463  0.574 0.739
summary(ur.kpss(matsu$U_L,type="mu",lags="short"))
## 
## ####################### 
## # KPSS Unit Root Test # 
## ####################### 
## 
## Test is of type: mu with 3 lags. 
## 
## Value of test-statistic is: 0.37 
## 
## Critical value for a significance level of: 
##                 10pct  5pct 2.5pct  1pct
## critical values 0.347 0.463  0.574 0.739
summary(ur.kpss(matsu$P_N,type="mu",lags="short"))
## 
## ####################### 
## # KPSS Unit Root Test # 
## ####################### 
## 
## Test is of type: mu with 3 lags. 
## 
## Value of test-statistic is: 0.9118 
## 
## Critical value for a significance level of: 
##                 10pct  5pct 2.5pct  1pct
## critical values 0.347 0.463  0.574 0.739
summary(ur.kpss(matsu$M2029_N,type="mu",lags="short"))
## 
## ####################### 
## # KPSS Unit Root Test # 
## ####################### 
## 
## Test is of type: mu with 3 lags. 
## 
## Value of test-statistic is: 0.6436 
## 
## Critical value for a significance level of: 
##                 10pct  5pct 2.5pct  1pct
## critical values 0.347 0.463  0.574 0.739
summary(ur.kpss(matsu$E1_N,type="mu",lags="short"))
## 
## ####################### 
## # KPSS Unit Root Test # 
## ####################### 
## 
## Test is of type: mu with 3 lags. 
## 
## Value of test-statistic is: 0.9 
## 
## Critical value for a significance level of: 
##                 10pct  5pct 2.5pct  1pct
## critical values 0.347 0.463  0.574 0.739

2. 秋葉(1993)の研究

変数の作成

capital$K1_N <- capital$K1/capital$N*100
capital$K2_N <- capital$K2/capital$N*100
capital$K3_N <- capital$K3/capital$N*100
capital$A2_K2 <- capital$A2/capital$K2*100
capital$A3_K3 <- capital$A3/capital$K3*100
capital$C1_A1 <- capital$C1/capital$A1*100
capital$C2_A2 <- capital$C2/capital$A2*100
capital$C3_A3 <- capital$C3/capital$A3*100
capital$S1_C1 <- capital$S1/capital$C1*100
capital$S2_C2 <- capital$S2/capital$C2*100
capital$S3_C3 <- capital$S3/capital$C3*100
capital$X_C1 <- capital$X/capital$C1*100
capital$X_C2 <- capital$X/capital$C2*100
capital$X_C3 <- capital$X/capital$C3*100
capital$G1_N <- capital$G1/capital$N*100
capital$G2_N <- capital$G2/capital$N*100
capital$F1_N <- capital$F1/(capital$N*1000)*100
capital$F2_N <- capital$F2/(capital$N*1000)*100
capital$F3_N <- capital$F3/(capital$N/10)*100
capital$M1524_N <- capital$M1524/capital$N*100
capital$E2_N <- capital$E2/(capital$N*1000)*100
capital$Y1972 <- ifelse(capital$YEAR<1972,0,1) #沖縄返還

データの年代を秋葉(1993)にそろえる

akiba <- subset(capital, 1960<=YEAR & YEAR<=1986)

その他の変数の作成

akiba$TREND=1:nrow(akiba) # トレンド変数

2.2 分析の再現

2.2.1 基本的な分析の再現

表2-3 秋葉(1993)の再現データの記述統計 (p.394)

library(RcmdrMisc)
akiba_sum <- numSummary(akiba[,c("K1_N","K2_N","K3_N","A1_K1","A2_K2","A3_K3","C1_A1","C2_A2","C3_A3","S1_C1","S2_C2","S3_C3","X_C1","X_C2","X_C3","U_L","W","G1_N","G2_N","F1_N","F2_N","F3_N","M1524_N","E2_N"),drop=F],statistics=c("mean", "sd", "quantiles"), quantiles=c(0,.5,1))
akiba_sum1 <- cbind(akiba_sum$table,akiba_sum$n)
print(round(akiba_sum1,3))
##            mean     sd     0%     50%    100%   
## K1_N      1.734  0.355  1.286   1.669   2.510 27
## K2_N      1.925  0.416  1.377   1.874   2.835 27
## K3_N      1.666  0.328  1.247   1.630   2.365 27
## A1_K1    97.324  0.640 95.906  97.295  98.596 27
## A2_K2    96.846  0.615 95.405  96.939  97.938 27
## A3_K3    97.702  0.604 96.458  97.686  98.930 27
## C1_A1    62.721  3.926 54.425  63.310  73.104 27
## C2_A2    55.543  3.684 47.233  55.660  64.401 27
## C3_A3    61.340  4.209 51.829  61.889  72.660 27
## S1_C1     0.751  0.389  0.221   0.763   1.988 27
## S2_C2     0.284  0.157  0.000   0.296   0.561 27
## S3_C3     0.293  0.162  0.000   0.306   0.579 27
## X_C1      0.738  0.817  0.000   0.319   2.648 27
## X_C2      0.761  0.849  0.000   0.333   2.778 27
## X_C3      0.785  0.876  0.000   0.343   2.893 27
## U_L       1.736  0.562  1.118   1.447   2.774 27
## W        57.911 18.979 29.000  68.200  80.400 27
## G1_N    190.131 66.572 76.733 206.660 290.026 27
## G2_N    122.023 86.703 17.138 103.485 275.706 27
## F1_N      8.819  3.284  5.156   7.885  15.566 27
## F2_N      8.717  3.151  5.156   7.885  14.261 27
## F3_N      7.374  3.210  3.698   6.053  13.627 27
## M1524_N   8.492  1.284  6.888   8.541  10.265 27
## E2_N      1.568  0.395  0.760   1.754   1.947 27

2.2.1.1 死刑言渡し率と死刑執行率

表2-4 秋葉(1993)の再現データでの回帰分析(死刑言渡し率使用) (p.393)
akiba1_S1_ols <- lm(K1_N~A1_K1+C1_A1+S1_C1+U_L+W+G1_N+F1_N+M1524_N+E2_N+Y1972+TREND, data=akiba)
akiba2_S2_ols <- lm(K2_N~A2_K2+C2_A2+S2_C2+U_L+W+G1_N+F1_N+M1524_N+E2_N+Y1972+TREND, data=akiba)
akiba3_S3_ols <- lm(K3_N~A3_K3+C3_A3+S3_C3+U_L+W+G1_N+F1_N+M1524_N+E2_N+Y1972+TREND, data=akiba)
library(memisc)
akiba_S_model <- mtable("1"=akiba1_S1_ols,"2"=akiba2_S2_ols,"3"=akiba3_S3_ols,coef.style="stat",signif.symbols=c("***"=.01,"**"=.05, "*"=.1),summary.stats=c("adj. R-squared","N"))
print(akiba_S_model)
## 
## Calls:
## 1: lm(formula = K1_N ~ A1_K1 + C1_A1 + S1_C1 + U_L + W + G1_N + 
##     F1_N + M1524_N + E2_N + Y1972 + TREND, data = akiba)
## 2: lm(formula = K2_N ~ A2_K2 + C2_A2 + S2_C2 + U_L + W + G1_N + 
##     F1_N + M1524_N + E2_N + Y1972 + TREND, data = akiba)
## 3: lm(formula = K3_N ~ A3_K3 + C3_A3 + S3_C3 + U_L + W + G1_N + 
##     F1_N + M1524_N + E2_N + Y1972 + TREND, data = akiba)
## 
## ===================================================
##                       1          2          3      
##                  ---------- ---------- ----------   
##                     K1_N       K2_N       K3_N     
## ---------------------------------------------------
##   (Intercept)       1.313      1.060      1.356    
##                    (0.431)    (0.257)    (0.356)   
##   A1_K1            -0.007                          
##                   (-0.296)                         
##   C1_A1            -0.007*                         
##                   (-1.981)                         
##   S1_C1             0.068                          
##                    (1.540)                         
##   U_L               0.370**    0.359**    0.327**  
##                    (2.684)    (2.534)    (2.415)   
##   W                 0.013      0.015      0.013    
##                    (1.053)    (0.983)    (1.005)   
##   G1_N             -0.003     -0.002     -0.002    
##                   (-0.561)   (-0.386)   (-0.361)   
##   F1_N              0.025      0.063      0.028    
##                    (0.284)    (0.691)    (0.306)   
##   M1524_N           0.133**    0.091      0.100*   
##                    (2.379)    (1.486)    (1.919)   
##   E2_N             -0.079     -0.027     -0.111    
##                   (-0.216)   (-0.068)   (-0.285)   
##   Y1972             0.123      0.065      0.065    
##                    (0.999)    (0.461)    (0.488)   
##   TREND            -0.046     -0.052     -0.049    
##                   (-0.908)   (-0.959)   (-0.951)   
##   A2_K2                       -0.002               
##                              (-0.073)              
##   C2_A2                       -0.011**             
##                              (-2.561)              
##   S2_C2                        0.139               
##                               (1.394)              
##   A3_K3                                  -0.004    
##                                         (-0.156)   
##   C3_A3                                  -0.009**  
##                                         (-2.420)   
##   S3_C3                                   0.109    
##                                          (1.190)   
## ---------------------------------------------------
##   adj. R-squared    0.970      0.977      0.965    
##   N                27         27         27        
## ===================================================
##   Significance: *** = p < 0.01; ** = p < 0.05;   
##                 * = p < 0.1

ダービンワトソン比

library(lmtest)
dwtest(akiba1_S1_ols)
## 
##  Durbin-Watson test
## 
## data:  akiba1_S1_ols
## DW = 2.0519, p-value = 0.101
## alternative hypothesis: true autocorrelation is greater than 0
dwtest(akiba2_S2_ols)
## 
##  Durbin-Watson test
## 
## data:  akiba2_S2_ols
## DW = 2.1449, p-value = 0.1566
## alternative hypothesis: true autocorrelation is greater than 0
dwtest(akiba3_S3_ols)
## 
##  Durbin-Watson test
## 
## data:  akiba3_S3_ols
## DW = 1.9525, p-value = 0.05968
## alternative hypothesis: true autocorrelation is greater than 0
表2-5 秋葉(1993)の再現データでの回帰分析(死刑執行率使用) (p.392)
akiba1_X_ols <- lm(K1_N~A1_K1+C1_A1+X_C1+U_L+W+G1_N+F1_N+M1524_N+E2_N+Y1972+TREND, data=akiba)
akiba2_X_ols <- lm(K2_N~A2_K2+C2_A2+X_C2+U_L+W+G1_N+F1_N+M1524_N+E2_N+Y1972+TREND, data=akiba)
akiba3_X_ols <- lm(K3_N~A3_K3+C3_A3+X_C3+U_L+W+G1_N+F1_N+M1524_N+E2_N+Y1972+TREND, data=akiba)
akiba_X_model <- mtable("1"=akiba1_X_ols,"2"=akiba2_X_ols,"3"=akiba3_X_ols,coef.style="stat",signif.symbols=c("***"=.01,"**"=.05, "*"=.1),summary.stats=c("adj. R-squared","N"))
print(akiba_X_model)
## 
## Calls:
## 1: lm(formula = K1_N ~ A1_K1 + C1_A1 + X_C1 + U_L + W + G1_N + F1_N + 
##     M1524_N + E2_N + Y1972 + TREND, data = akiba)
## 2: lm(formula = K2_N ~ A2_K2 + C2_A2 + X_C2 + U_L + W + G1_N + F1_N + 
##     M1524_N + E2_N + Y1972 + TREND, data = akiba)
## 3: lm(formula = K3_N ~ A3_K3 + C3_A3 + X_C3 + U_L + W + G1_N + F1_N + 
##     M1524_N + E2_N + Y1972 + TREND, data = akiba)
## 
## ===================================================
##                       1          2          3      
##                  ---------- ---------- ----------   
##                     K1_N       K2_N       K3_N     
## ---------------------------------------------------
##   (Intercept)       2.356      1.341      3.063    
##                    (0.779)    (0.339)    (0.805)   
##   A1_K1            -0.023                          
##                   (-0.909)                         
##   C1_A1            -0.009**                        
##                   (-2.563)                         
##   X_C1             -0.044*                         
##                   (-1.852)                         
##   U_L               0.331**    0.344**    0.321**  
##                    (2.603)    (2.632)    (2.545)   
##   W                 0.012      0.011      0.010    
##                    (0.975)    (0.772)    (0.817)   
##   G1_N             -0.003     -0.002     -0.001    
##                   (-0.518)   (-0.302)   (-0.159)   
##   F1_N              0.094      0.114      0.055    
##                    (1.119)    (1.292)    (0.628)   
##   M1524_N           0.091*     0.068      0.080    
##                    (1.794)    (1.145)    (1.617)   
##   E2_N              0.165      0.231      0.027    
##                    (0.460)    (0.614)    (0.074)   
##   Y1972             0.089      0.090      0.080    
##                    (0.726)    (0.692)    (0.659)   
##   TREND            -0.034     -0.045     -0.052    
##                   (-0.720)   (-0.891)   (-1.048)   
##   A2_K2                       -0.011               
##                              (-0.363)              
##   C2_A2                       -0.010**             
##                              (-2.571)              
##   X_C2                        -0.042*              
##                              (-1.867)              
##   A3_K3                                  -0.024    
##                                         (-0.802)   
##   C3_A3                                  -0.009**  
##                                         (-2.564)   
##   X_C3                                   -0.037    
##                                         (-1.688)   
## ---------------------------------------------------
##   adj. R-squared    0.972      0.979      0.968    
##   N                27         27         27        
## ===================================================
##   Significance: *** = p < 0.01; ** = p < 0.05;   
##                 * = p < 0.1

ダービン・ワトソン比

dwtest(akiba1_X_ols)
## 
##  Durbin-Watson test
## 
## data:  akiba1_X_ols
## DW = 1.7755, p-value = 0.02002
## alternative hypothesis: true autocorrelation is greater than 0
dwtest(akiba2_X_ols)
## 
##  Durbin-Watson test
## 
## data:  akiba2_X_ols
## DW = 1.687, p-value = 0.01055
## alternative hypothesis: true autocorrelation is greater than 0
dwtest(akiba3_X_ols)
## 
##  Durbin-Watson test
## 
## data:  akiba3_X_ols
## DW = 1.6088, p-value = 0.006017
## alternative hypothesis: true autocorrelation is greater than 0

2.2.1.2. 1人当たりGDP

表2-6 秋葉(1993)の再現データでの回帰分析(1人当たり名目GDP使用) (p.391)
akiba1_XG2_ols <- lm(K1_N~A1_K1+C1_A1+X_C1+U_L+W+G2_N+F1_N+M1524_N+E2_N+Y1972+TREND, data=akiba)
akiba2_XG2_ols <- lm(K2_N~A2_K2+C2_A2+X_C2+U_L+W+G2_N+F1_N+M1524_N+E2_N+Y1972+TREND, data=akiba)
akiba3_XG2_ols <- lm(K3_N~A3_K3+C3_A3+X_C3+U_L+W+G2_N+F1_N+M1524_N+E2_N+Y1972+TREND, data=akiba)
akiba_XG2_model <- mtable("1"=akiba1_XG2_ols,"2"=akiba2_XG2_ols,"3"=akiba3_XG2_ols,coef.style="stat",signif.symbols=c("***"=.01,"**"=.05, "*"=.1),summary.stats=c("adj. R-squared","N"))
print(akiba_XG2_model)
## 
## Calls:
## 1: lm(formula = K1_N ~ A1_K1 + C1_A1 + X_C1 + U_L + W + G2_N + F1_N + 
##     M1524_N + E2_N + Y1972 + TREND, data = akiba)
## 2: lm(formula = K2_N ~ A2_K2 + C2_A2 + X_C2 + U_L + W + G2_N + F1_N + 
##     M1524_N + E2_N + Y1972 + TREND, data = akiba)
## 3: lm(formula = K3_N ~ A3_K3 + C3_A3 + X_C3 + U_L + W + G2_N + F1_N + 
##     M1524_N + E2_N + Y1972 + TREND, data = akiba)
## 
## ===================================================
##                       1          2          3      
##                  ---------- ---------- ----------   
##                     K1_N       K2_N       K3_N     
## ---------------------------------------------------
##   (Intercept)       3.769      3.079      4.936    
##                    (1.145)    (0.852)    (1.246)   
##   A1_K1            -0.032                          
##                   (-1.122)                         
##   C1_A1            -0.009**                        
##                   (-2.549)                         
##   X_C1             -0.049*                         
##                   (-1.904)                         
##   U_L               0.347**    0.346**    0.311**  
##                    (2.872)    (2.884)    (2.778)   
##   W                 0.006      0.005      0.005    
##                    (0.609)    (0.449)    (0.573)   
##   G2_N             -0.002     -0.003     -0.004    
##                   (-0.358)   (-0.483)   (-0.676)   
##   F1_N              0.097      0.132      0.085    
##                    (0.970)    (1.318)    (0.931)   
##   M1524_N           0.037     -0.002     -0.002    
##                    (0.282)   (-0.011)   (-0.017)   
##   E2_N              0.046      0.126     -0.106    
##                    (0.128)    (0.345)   (-0.290)   
##   Y1972             0.100      0.110      0.086    
##                    (0.823)    (0.877)    (0.734)   
##   TREND            -0.021     -0.012      0.002    
##                   (-0.216)   (-0.118)    (0.024)   
##   A2_K2                       -0.024               
##                              (-0.779)              
##   C2_A2                       -0.010**             
##                              (-2.642)              
##   X_C2                        -0.047*              
##                              (-2.007)              
##   A3_K3                                  -0.037    
##                                         (-1.160)   
##   C3_A3                                  -0.009**  
##                                         (-2.696)   
##   X_C3                                   -0.045*   
##                                         (-1.887)   
## ---------------------------------------------------
##   adj. R-squared    0.972      0.979      0.969    
##   N                27         27         27        
## ===================================================
##   Significance: *** = p < 0.01; ** = p < 0.05;   
##                 * = p < 0.1

ダービン・ワトソン比

dwtest(akiba1_XG2_ols)
## 
##  Durbin-Watson test
## 
## data:  akiba1_XG2_ols
## DW = 1.749, p-value = 0.01754
## alternative hypothesis: true autocorrelation is greater than 0
dwtest(akiba2_XG2_ols)
## 
##  Durbin-Watson test
## 
## data:  akiba2_XG2_ols
## DW = 1.5814, p-value = 0.003929
## alternative hypothesis: true autocorrelation is greater than 0
dwtest(akiba3_XG2_ols)
## 
##  Durbin-Watson test
## 
## data:  akiba3_XG2_ols
## DW = 1.5922, p-value = 0.004682
## alternative hypothesis: true autocorrelation is greater than 0

2.2.1.3. 農村地域人口率

表2-7 秋葉(1993)の再現データでの回帰分析(農村地域人口率の変数を置換) (p.389)
akiba_XF2_ols <- lm(K2_N~A2_K2+C2_A2+X_C2+U_L+W+G1_N+F2_N+M1524_N+E2_N+Y1972+TREND, data=akiba)
akiba_XF3_ols <- lm(K2_N~A2_K2+C2_A2+X_C2+U_L+W+G1_N+F3_N+M1524_N+E2_N+Y1972+TREND, data=akiba)
# 変数F3は1955年からデータを得ることができる
akiba5586 <- subset(capital, 1955<=YEAR & YEAR<=1986)
akiba5586$TREND=1:nrow(akiba5586) # トレンド変数
akiba_XF3_ols5586 <- lm(K2_N~A2_K2+C2_A2+X_C2+U_L+W+G1_N+F3_N+M1524_N+E2_N+Y1972+TREND, data=akiba5586) 
akiba_XF23_model <- mtable("1"=akiba_XF2_ols,"2"=akiba_XF3_ols,"3"=akiba_XF3_ols5586,coef.style="stat",signif.symbols=c("***"=.01,"**"=.05, "*"=.1),summary.stats=c("adj. R-squared","N"))
print(akiba_XF23_model)
## 
## Calls:
## 1: lm(formula = K2_N ~ A2_K2 + C2_A2 + X_C2 + U_L + W + G1_N + F2_N + 
##     M1524_N + E2_N + Y1972 + TREND, data = akiba)
## 2: lm(formula = K2_N ~ A2_K2 + C2_A2 + X_C2 + U_L + W + G1_N + F3_N + 
##     M1524_N + E2_N + Y1972 + TREND, data = akiba)
## 3: lm(formula = K2_N ~ A2_K2 + C2_A2 + X_C2 + U_L + W + G1_N + F3_N + 
##     M1524_N + E2_N + Y1972 + TREND, data = akiba5586)
## 
## ====================================================
##                       1           2          3      
## ----------------------------------------------------
##   (Intercept)      -1.296       0.389      5.423    
##                   (-0.308)     (0.090)    (0.756)   
##   A2_K2            -0.012      -0.007     -0.001    
##                   (-0.413)    (-0.231)   (-0.013)   
##   C2_A2            -0.015***   -0.010**   -0.009    
##                   (-3.482)    (-2.562)   (-1.350)   
##   X_C2             -0.038*     -0.035     -0.003    
##                   (-1.801)    (-1.567)   (-0.109)   
##   U_L               0.390***    0.355**    0.265**  
##                    (3.840)     (2.836)    (2.233)   
##   W                 0.015       0.023     -0.016    
##                    (1.042)     (1.273)   (-0.566)   
##   G1_N             -0.000      -0.003      0.004    
##                   (-0.102)    (-0.444)    (0.450)   
##   F2_N              0.309*                          
##                    (1.923)                          
##   M1524_N           0.018       0.127*    -0.023    
##                    (0.284)     (1.771)   (-0.206)   
##   E2_N              0.806       0.056     -0.412    
##                    (1.466)     (0.222)   (-1.101)   
##   Y1972             0.125       0.064      0.114    
##                    (1.001)     (0.512)    (0.596)   
##   TREND            -0.026      -0.048     -0.093    
##                   (-0.565)    (-0.978)   (-1.392)   
##   F3_N                          0.116     -0.098    
##                                (1.309)   (-0.821)   
## ----------------------------------------------------
##   adj. R-squared    0.981       0.979      0.964    
##   N                27          27         32        
## ====================================================
##   Significance: *** = p < 0.01; ** = p < 0.05;   
##                 * = p < 0.1

ダービン・ワトソン比

dwtest(akiba_XF2_ols)
## 
##  Durbin-Watson test
## 
## data:  akiba_XF2_ols
## DW = 2.0271, p-value = 0.05079
## alternative hypothesis: true autocorrelation is greater than 0
dwtest(akiba_XF3_ols)
## 
##  Durbin-Watson test
## 
## data:  akiba_XF3_ols
## DW = 1.7799, p-value = 0.009729
## alternative hypothesis: true autocorrelation is greater than 0
dwtest(akiba_XF3_ols5586)
## 
##  Durbin-Watson test
## 
## data:  akiba_XF3_ols5586
## DW = 1.4307, p-value = 0.0007794
## alternative hypothesis: true autocorrelation is greater than 0

2.2.2 対数変換とラグ

変数の変換

# ラグ
akiba$K2LAG <- c(NA,akiba$K2[1:length(akiba$K2)-1])
akiba$A2_K2LAG <- (akiba$A2)/(akiba$K2LAG)
akiba$LA2_K2LAG <- log(akiba$A2_K2LAG)
# 対数
akiba$LK2_N <- log(akiba$K2_N)
akiba$LA2_K2 <- log(akiba$A2_K2)
akiba$LC2_A2 <- log(akiba$C2_A2)
akiba$LU_L <- log(akiba$U_L)
akiba$LW <- log(akiba$W)
akiba$LG1_N <- log(akiba$G1_N)
akiba$LF1_N <- log(akiba$F1_N)
akiba$LM1524_N <- log(akiba$M1524_N)
akiba$LE2_N <- log(akiba$E2_N)
#対数変換用の0の処理1(X=0をX=1に、Ehrlich 1975の方法)
akiba$X_C2_1 <- ifelse(akiba$X==0,1,akiba$X)/akiba$C2*100 
akiba$LX_C2_1 <- log(akiba$X_C2_1) #対数変換での0の処理2(Xすべてに1を足す)
akiba$X_C2_2 <- (akiba$X+1)/akiba$C2*100 
akiba$LX_C2_2 <- log(akiba$X_C2_2) 

表2-8 秋葉(1993)の再現データでの回帰分析(対数変換・ラグ) (p.386)

表2-8のうち「(2)線形ラグ」

akiba_lag_ols <- lm(K2_N~A2_K2LAG+C2_A2+X_C2+U_L+W+G1_N+F1_N+M1524_N+E2_N+Y1972+TREND, data=akiba)
akiba_lag_model <- mtable("1"=akiba_lag_ols,coef.style="stat",signif.symbols=c("***"=.01,"**"=.05, "*"=.1),summary.stats=c("adj. R-squared","N"))
print(akiba_lag_model)
## 
## Calls:
## 1: lm(formula = K2_N ~ A2_K2LAG + C2_A2 + X_C2 + U_L + W + G1_N + 
##     F1_N + M1524_N + E2_N + Y1972 + TREND, data = akiba)
## 
## =============================
##   (Intercept)      -1.403    
##                   (-0.856)   
##   A2_K2LAG          0.311    
##                    (0.844)   
##   C2_A2            -0.008    
##                   (-1.549)   
##   X_C2             -0.031    
##                   (-1.445)   
##   U_L               0.310**  
##                    (2.246)   
##   W                 0.016    
##                    (1.335)   
##   G1_N             -0.004    
##                   (-0.906)   
##   F1_N              0.190*   
##                    (1.948)   
##   M1524_N           0.064    
##                    (1.164)   
##   E2_N              0.512    
##                    (1.297)   
##   Y1972             0.088    
##                    (0.704)   
##   TREND            -0.015    
##                   (-0.321)   
## -----------------------------
##   adj. R-squared    0.977    
##   N                26        
## =============================
##   Significance:   
##                 *** = p < 0.01;   
##                 ** = p < 0.05;   
##                 * = p < 0.1

表2-8のうち「(1)対数」と「(3)対数ラグ」

akiba_log_ols1 <- lm(LK2_N~LA2_K2+LC2_A2+LX_C2_1+LU_L+LW+LG1_N+LF1_N+LM1524_N+LE2_N+Y1972+TREND, data=akiba)
akiba_laglog_ols1 <- lm(LK2_N~LA2_K2LAG+LC2_A2+LX_C2_1+LU_L+LW+LG1_N+LF1_N+LM1524_N+LE2_N+Y1972+TREND, data=akiba)
akiba_log_model1 <- mtable("1"=akiba_log_ols1,"2"=akiba_laglog_ols1,coef.style="stat",signif.symbols=c("***"=.01,"**"=.05, "*"=.1),summary.stats=c("adj. R-squared","N"))
print(akiba_log_model1)
## 
## Calls:
## 1: lm(formula = LK2_N ~ LA2_K2 + LC2_A2 + LX_C2_1 + LU_L + LW + 
##     LG1_N + LF1_N + LM1524_N + LE2_N + Y1972 + TREND, data = akiba)
## 2: lm(formula = LK2_N ~ LA2_K2LAG + LC2_A2 + LX_C2_1 + LU_L + LW + 
##     LG1_N + LF1_N + LM1524_N + LE2_N + Y1972 + TREND, data = akiba)
## 
## ======================================
##                      1         2      
## --------------------------------------
##   (Intercept)      -2.506     1.729   
##                   (-0.285)   (0.959)  
##   LA2_K2            0.924             
##                    (0.454)            
##   LC2_A2           -0.214    -0.130   
##                   (-1.649)  (-0.798)  
##   LX_C2_1          -0.004    -0.002   
##                   (-0.401)  (-0.165)  
##   LU_L              0.224     0.190   
##                    (1.579)   (1.231)  
##   LW                0.462     0.536   
##                    (1.039)   (1.491)  
##   LG1_N            -0.617    -0.773   
##                   (-0.826)  (-1.357)  
##   LF1_N            -0.115     0.130   
##                   (-0.198)   (0.230)  
##   LM1524_N          0.704     0.474   
##                    (1.733)   (1.310)  
##   LE2_N             0.078     0.165   
##                    (0.230)   (0.563)  
##   Y1972             0.020     0.002   
##                    (0.264)   (0.030)  
##   TREND            -0.021    -0.010   
##                   (-0.717)  (-0.402)  
##   LA2_K2LAG                   0.281   
##                              (1.269)  
## --------------------------------------
##   adj. R-squared    0.969     0.970   
##   N                27        26       
## ======================================
##   Significance: *** = p < 0.01;   
##                 ** = p < 0.05;   
##                 * = p < 0.1

ダービン・ワトソン比

dwtest(akiba_lag_ols)
## 
##  Durbin-Watson test
## 
## data:  akiba_lag_ols
## DW = 2.068, p-value = 0.09291
## alternative hypothesis: true autocorrelation is greater than 0
dwtest(akiba_log_ols1)
## 
##  Durbin-Watson test
## 
## data:  akiba_log_ols1
## DW = 1.8087, p-value = 0.03568
## alternative hypothesis: true autocorrelation is greater than 0
dwtest(akiba_laglog_ols1)
## 
##  Durbin-Watson test
## 
## data:  akiba_laglog_ols1
## DW = 1.7299, p-value = 0.01866
## alternative hypothesis: true autocorrelation is greater than 0

表2-9 秋葉(1993)の再現データでの回帰分析(対数変換時のゼロの処理) (p.384)

akiba_log_ols2 <- lm(LK2_N~LA2_K2+LC2_A2+LX_C2_2+LU_L+LW+LG1_N+LF1_N+LM1524_N+LE2_N+Y1972+TREND, data=akiba)
akiba_laglog_ols2 <- lm(LK2_N~LA2_K2LAG+LC2_A2+LX_C2_2+LU_L+LW+LG1_N+LF1_N+LM1524_N+LE2_N+Y1972+TREND, data=akiba)
akiba_log_model2 <- mtable("1"=akiba_log_ols2,"2"=akiba_laglog_ols2,coef.style="stat",signif.symbols=c("***"=.01,"**"=.05, "*"=.1),summary.stats=c("adj. R-squared","N"))
print(akiba_log_model2)
## 
## Calls:
## 1: lm(formula = LK2_N ~ LA2_K2 + LC2_A2 + LX_C2_2 + LU_L + LW + 
##     LG1_N + LF1_N + LM1524_N + LE2_N + Y1972 + TREND, data = akiba)
## 2: lm(formula = LK2_N ~ LA2_K2LAG + LC2_A2 + LX_C2_2 + LU_L + LW + 
##     LG1_N + LF1_N + LM1524_N + LE2_N + Y1972 + TREND, data = akiba)
## 
## ======================================
##                      1         2      
## --------------------------------------
##   (Intercept)      -2.014     1.526   
##                   (-0.233)   (0.852)  
##   LA2_K2            0.763             
##                    (0.381)            
##   LC2_A2           -0.212    -0.142   
##                   (-1.661)  (-0.874)  
##   LX_C2_2          -0.008    -0.005   
##                   (-0.804)  (-0.497)  
##   LU_L              0.239     0.211   
##                    (1.716)   (1.372)  
##   LW                0.475     0.568   
##                    (1.091)   (1.632)  
##   LG1_N            -0.593    -0.774   
##                   (-0.805)  (-1.376)  
##   LF1_N            -0.060     0.171   
##                   (-0.106)   (0.309)  
##   LM1524_N          0.675     0.486   
##                    (1.681)   (1.362)  
##   LE2_N             0.083     0.172   
##                    (0.251)   (0.599)  
##   Y1972             0.016    -0.000   
##                    (0.219)  (-0.003)  
##   TREND            -0.021    -0.011   
##                   (-0.743)  (-0.415)  
##   LA2_K2LAG                   0.251   
##                              (1.125)  
## --------------------------------------
##   adj. R-squared    0.970     0.970   
##   N                27        26       
## ======================================
##   Significance: *** = p < 0.01;   
##                 ** = p < 0.05;   
##                 * = p < 0.1

ダービン・ワトソン比

dwtest(akiba_log_ols2)
## 
##  Durbin-Watson test
## 
## data:  akiba_log_ols2
## DW = 1.7491, p-value = 0.02725
## alternative hypothesis: true autocorrelation is greater than 0
dwtest(akiba_laglog_ols2)
## 
##  Durbin-Watson test
## 
## data:  akiba_laglog_ols2
## DW = 1.7406, p-value = 0.02075
## alternative hypothesis: true autocorrelation is greater than 0

2.3 分析の問題点

2.3.1 系列相関への対処

注65:分散不均一性の検定 (p.348)

bptest(akiba1_X_ols)
## 
##  studentized Breusch-Pagan test
## 
## data:  akiba1_X_ols
## BP = 12.898, df = 11, p-value = 0.3001
bptest(akiba2_X_ols)
## 
##  studentized Breusch-Pagan test
## 
## data:  akiba2_X_ols
## BP = 9.4742, df = 11, p-value = 0.5782
bptest(akiba3_X_ols)
## 
##  studentized Breusch-Pagan test
## 
## data:  akiba3_X_ols
## BP = 11.682, df = 11, p-value = 0.388

2.3.2 多重共線性への対処

表2-10 秋葉 (1993)の再現データでの説明変数同士の相関 (p.382)

akiba_cor <- cor(akiba[,c("A2_K2","C2_A2","X_C2","U_L","W","G1_N","F1_N","M1524_N","E2_N","Y1972","TREND")])
print(round(akiba_cor,3))
##          A2_K2  C2_A2   X_C2    U_L      W   G1_N   F1_N M1524_N   E2_N  Y1972
## A2_K2    1.000  0.054 -0.323  0.190 -0.058 -0.057  0.088  -0.162 -0.207  0.071
## C2_A2    0.054  1.000 -0.178  0.107 -0.148 -0.117  0.155   0.089 -0.266 -0.088
## X_C2    -0.323 -0.178  1.000 -0.414 -0.431 -0.445  0.466   0.426 -0.348 -0.492
## U_L      0.190  0.107 -0.414  1.000  0.783  0.801 -0.750  -0.879  0.600  0.756
## W       -0.058 -0.148 -0.431  0.783  1.000  0.984 -0.983  -0.913  0.943  0.930
## G1_N    -0.057 -0.117 -0.445  0.801  0.984  1.000 -0.983  -0.871  0.930  0.870
## F1_N     0.088  0.155  0.466 -0.750 -0.983 -0.983  1.000   0.868 -0.968 -0.888
## M1524_N -0.162  0.089  0.426 -0.879 -0.913 -0.871  0.868   1.000 -0.780 -0.917
## E2_N    -0.207 -0.266 -0.348  0.600  0.943  0.930 -0.968  -0.780  1.000  0.829
## Y1972    0.071 -0.088 -0.492  0.756  0.930  0.870 -0.888  -0.917  0.829  1.000
## TREND   -0.014 -0.063 -0.482  0.861  0.967  0.991 -0.971  -0.887  0.892  0.861
##          TREND
## A2_K2   -0.014
## C2_A2   -0.063
## X_C2    -0.482
## U_L      0.861
## W        0.967
## G1_N     0.991
## F1_N    -0.971
## M1524_N -0.887
## E2_N     0.892
## Y1972    0.861
## TREND    1.000

表2-11 秋葉 (1993)の再現データでのVIF (p.381)

library(car)
akiba2_X_vif <- vif(akiba2_X_ols)
print(round(akiba2_X_vif,3))
##    A2_K2    C2_A2     X_C2      U_L        W     G1_N     F1_N  M1524_N 
##    2.614    1.474    2.622   38.200  540.472 1045.290  591.224   40.888 
##     E2_N    Y1972    TREND 
##  156.874   30.646 1152.965

表2-12 変数選択を行った場合の秋葉(1993)と再現データでの回帰分析 (p.381)

akiba_step <- lm(K2_N~A2_K2+C2_A2+X_C2+F1_N+M1524_N, data=akiba)
akiba_step_model <- mtable("1"=akiba_step,coef.style="stat",signif.symbols=c("***"=.01,"**"=.05, "*"=.1),summary.stats=c("adj. R-squared","N"))
print(akiba_step_model)
## 
## Calls:
## 1: lm(formula = K2_N ~ A2_K2 + C2_A2 + X_C2 + F1_N + M1524_N, data = akiba)
## 
## ==============================
##   (Intercept)       6.197*    
##                    (1.743)    
##   A2_K2            -0.045     
##                   (-1.261)    
##   C2_A2            -0.012**   
##                   (-2.444)    
##   X_C2             -0.038     
##                   (-1.435)    
##   F1_N              0.156***  
##                   (11.825)    
##   M1524_N          -0.076**   
##                   (-2.450)    
## ------------------------------
##   adj. R-squared    0.958     
##   N                27         
## ==============================
##   Significance:   
##                 *** = p < 0.01;   
##                 ** = p < 0.05;   
##                 * = p < 0.1

ダービンワトソン比

dwtest(akiba_step)
## 
##  Durbin-Watson test
## 
## data:  akiba_step
## DW = 1.0566, p-value = 0.0004979
## alternative hypothesis: true autocorrelation is greater than 0

表2-13 変数選択を行った場合の再現データでのVIF (p.381)

akiba_step_vif <- vif(akiba_step)
print(akiba_step_vif)
##    A2_K2    C2_A2     X_C2     F1_N  M1524_N 
## 1.678158 1.151086 1.779411 6.695957 5.592502

2.3.4 単位根の存在

表2-14 秋葉(1993)の再現データのADF検定 (p.379)

トレンドと定数項

library(CADFtest)
CADFtest(akiba$K2_N, type="trend", max.lag.y=4, criterion="MAIC")
## 
##  ADF test
## 
## data:  akiba$K2_N
## ADF(0) = -3.0274, p-value = 0.1474
## alternative hypothesis: true delta is less than 0
## sample estimates:
##     delta 
## -0.563594
CADFtest(akiba$A2_K2, type="trend", max.lag.y=4, criterion="MAIC")
## 
##  ADF test
## 
## data:  akiba$A2_K2
## ADF(3) = -2.1759, p-value = 0.4787
## alternative hypothesis: true delta is less than 0
## sample estimates:
##      delta 
## -0.8246995
CADFtest(akiba$C2_A2, type="trend", max.lag.y=4, criterion="MAIC")
## 
##  ADF test
## 
## data:  akiba$C2_A2
## ADF(3) = -1.7019, p-value = 0.7159
## alternative hypothesis: true delta is less than 0
## sample estimates:
##      delta 
## -0.8069091
CADFtest(akiba$X_C2, type="trend", max.lag.y=4, criterion="MAIC")
## 
##  ADF test
## 
## data:  akiba$X_C2
## ADF(0) = -3.7814, p-value = 0.0376
## alternative hypothesis: true delta is less than 0
## sample estimates:
##      delta 
## -0.7866579
CADFtest(akiba$U_L, type="trend", max.lag.y=4, criterion="MAIC")
## 
##  ADF test
## 
## data:  akiba$U_L
## ADF(4) = -1.9424, p-value = 0.5989
## alternative hypothesis: true delta is less than 0
## sample estimates:
##      delta 
## -0.3045104
CADFtest(akiba$W, type="trend", max.lag.y=4, criterion="MAIC")
## 
##  ADF test
## 
## data:  akiba$W
## ADF(1) = -1.1674, p-value = 0.8925
## alternative hypothesis: true delta is less than 0
## sample estimates:
##       delta 
## -0.08290479
CADFtest(akiba$G1_N, type="trend", max.lag.y=4, criterion="MAIC")
## 
##  ADF test
## 
## data:  akiba$G1_N
## ADF(0) = -1.5242, p-value = 0.7894
## alternative hypothesis: true delta is less than 0
## sample estimates:
##      delta 
## -0.1668875
CADFtest(akiba$F1_N, type="trend", max.lag.y=4, criterion="MAIC")
## 
##  ADF test
## 
## data:  akiba$F1_N
## ADF(0) = -0.46608, p-value = 0.9773
## alternative hypothesis: true delta is less than 0
## sample estimates:
##       delta 
## -0.03379476
CADFtest(akiba$M1524_N, type="trend", max.lag.y=4, criterion="MAIC")
## 
##  ADF test
## 
## data:  akiba$M1524_N
## ADF(2) = -0.73489, p-value = 0.957
## alternative hypothesis: true delta is less than 0
## sample estimates:
##       delta 
## -0.05088188
CADFtest(akiba$E2_N, type="trend", max.lag.y=4, criterion="MAIC")
## 
##  ADF test
## 
## data:  akiba$E2_N
## ADF(4) = -1.8896, p-value = 0.6257
## alternative hypothesis: true delta is less than 0
## sample estimates:
##       delta 
## -0.08050493

定数項

CADFtest(akiba$K2_N, type="drift", max.lag.y=4, criterion="MAIC")
## 
##  ADF test
## 
## data:  akiba$K2_N
## ADF(0) = -1.6687, p-value = 0.4324
## alternative hypothesis: true delta is less than 0
## sample estimates:
##       delta 
## -0.09503703
CADFtest(akiba$A2_K2, type="drift", max.lag.y=4, criterion="MAIC")
## 
##  ADF test
## 
## data:  akiba$A2_K2
## ADF(3) = -1.8449, p-value = 0.3504
## alternative hypothesis: true delta is less than 0
## sample estimates:
##      delta 
## -0.6812186
CADFtest(akiba$C2_A2, type="drift", max.lag.y=4, criterion="MAIC")
## 
##  ADF test
## 
## data:  akiba$C2_A2
## ADF(1) = -2.9142, p-value = 0.05977
## alternative hypothesis: true delta is less than 0
## sample estimates:
##      delta 
## -0.9629817
CADFtest(akiba$X_C2, type="drift", max.lag.y=4, criterion="MAIC")
## 
##  ADF test
## 
## data:  akiba$X_C2
## ADF(4) = -1.1026, p-value = 0.6958
## alternative hypothesis: true delta is less than 0
## sample estimates:
##      delta 
## -0.4354885
CADFtest(akiba$U_L, type="drift", max.lag.y=4, criterion="MAIC")
## 
##  ADF test
## 
## data:  akiba$U_L
## ADF(0) = 0.071658, p-value = 0.9558
## alternative hypothesis: true delta is less than 0
## sample estimates:
##       delta 
## 0.004465974
CADFtest(akiba$W, type="drift", max.lag.y=4, criterion="MAIC")
## 
##  ADF test
## 
## data:  akiba$W
## ADF(1) = -1.8405, p-value = 0.3523
## alternative hypothesis: true delta is less than 0
## sample estimates:
##       delta 
## -0.03983275
CADFtest(akiba$G1_N, type="drift", max.lag.y=4, criterion="MAIC")
## 
##  ADF test
## 
## data:  akiba$G1_N
## ADF(1) = -1.372, p-value = 0.5769
## alternative hypothesis: true delta is less than 0
## sample estimates:
##       delta 
## -0.02704914
CADFtest(akiba$F1_N, type="drift", max.lag.y=4, criterion="MAIC")
## 
##  ADF test
## 
## data:  akiba$F1_N
## ADF(0) = -4.3043, p-value = 0.003046
## alternative hypothesis: true delta is less than 0
## sample estimates:
##       delta 
## -0.07686109
CADFtest(akiba$M1524_N, type="drift", max.lag.y=4, criterion="MAIC")
## 
##  ADF test
## 
## data:  akiba$M1524_N
## ADF(1) = -2.461, p-value = 0.138
## alternative hypothesis: true delta is less than 0
## sample estimates:
##       delta 
## -0.05438632
CADFtest(akiba$E2_N, type="drift", max.lag.y=4, criterion="MAIC")
## 
##  ADF test
## 
## data:  akiba$E2_N
## ADF(1) = -4.2187, p-value = 0.00369
## alternative hypothesis: true delta is less than 0
## sample estimates:
##       delta 
## -0.09532783

どちらもなし

CADFtest(akiba$K2_N, type="none", max.lag.y=4, criterion="MAIC")
## 
##  ADF test
## 
## data:  akiba$K2_N
## ADF(0) = -3.0564, p-value = 0.003947
## alternative hypothesis: true delta is less than 0
## sample estimates:
##       delta 
## -0.02808668
CADFtest(akiba$A2_K2, type="none", max.lag.y=4, criterion="MAIC")
## 
##  ADF test
## 
## data:  akiba$A2_K2
## ADF(1) = -0.2956, p-value = 0.5676
## alternative hypothesis: true delta is less than 0
## sample estimates:
##         delta 
## -0.0004685171
CADFtest(akiba$C2_A2, type="none", max.lag.y=4, criterion="MAIC")
## 
##  ADF test
## 
## data:  akiba$C2_A2
## ADF(1) = -0.034915, p-value = 0.6602
## alternative hypothesis: true delta is less than 0
## sample estimates:
##         delta 
## -0.0005616882
CADFtest(akiba$X_C2, type="none", max.lag.y=4, criterion="MAIC")
## 
##  ADF test
## 
## data:  akiba$X_C2
## ADF(3) = -0.97943, p-value = 0.2828
## alternative hypothesis: true delta is less than 0
## sample estimates:
##      delta 
## -0.1951497
CADFtest(akiba$U_L, type="none", max.lag.y=4, criterion="MAIC")
## 
##  ADF test
## 
## data:  akiba$U_L
## ADF(0) = 2.1233, p-value = 0.9892
## alternative hypothesis: true delta is less than 0
## sample estimates:
##     delta 
## 0.0389454
CADFtest(akiba$W, type="none", max.lag.y=4, criterion="MAIC")
## 
##  ADF test
## 
## data:  akiba$W
## ADF(3) = 0.27325, p-value = 0.756
## alternative hypothesis: true delta is less than 0
## sample estimates:
##       delta 
## 0.002344583
CADFtest(akiba$G1_N, type="none", max.lag.y=4, criterion="MAIC")
## 
##  ADF test
## 
## data:  akiba$G1_N
## ADF(3) = 0.86376, p-value = 0.8893
## alternative hypothesis: true delta is less than 0
## sample estimates:
##       delta 
## 0.009163559
CADFtest(akiba$F1_N, type="none", max.lag.y=4, criterion="MAIC")
## 
##  ADF test
## 
## data:  akiba$F1_N
## ADF(3) = -2.0526, p-value = 0.04089
## alternative hypothesis: true delta is less than 0
## sample estimates:
##       delta 
## -0.03969107
CADFtest(akiba$M1524_N, type="none", max.lag.y=4, criterion="MAIC")
## 
##  ADF test
## 
## data:  akiba$M1524_N
## ADF(1) = -2.1553, p-value = 0.03278
## alternative hypothesis: true delta is less than 0
## sample estimates:
##        delta 
## -0.008984078
CADFtest(akiba$E2_N, type="none", max.lag.y=4, criterion="MAIC")
## 
##  ADF test
## 
## data:  akiba$E2_N
## ADF(1) = 0.24849, p-value = 0.749
## alternative hypothesis: true delta is less than 0
## sample estimates:
##       delta 
## 0.001009297

表2-15 秋葉(1993)の再現データのKPSS検定 (p.379)

トレンドと定数項

library(urca)
summary(ur.kpss(akiba$K2_N,type="tau",lags="short"))
## 
## ####################### 
## # KPSS Unit Root Test # 
## ####################### 
## 
## Test is of type: tau with 2 lags. 
## 
## Value of test-statistic is: 0.1819 
## 
## Critical value for a significance level of: 
##                 10pct  5pct 2.5pct  1pct
## critical values 0.119 0.146  0.176 0.216
summary(ur.kpss(akiba$A2_K2,type="tau",lags="short"))
## 
## ####################### 
## # KPSS Unit Root Test # 
## ####################### 
## 
## Test is of type: tau with 2 lags. 
## 
## Value of test-statistic is: 0.144 
## 
## Critical value for a significance level of: 
##                 10pct  5pct 2.5pct  1pct
## critical values 0.119 0.146  0.176 0.216
summary(ur.kpss(akiba$C2_A2,type="tau",lags="short"))
## 
## ####################### 
## # KPSS Unit Root Test # 
## ####################### 
## 
## Test is of type: tau with 2 lags. 
## 
## Value of test-statistic is: 0.1418 
## 
## Critical value for a significance level of: 
##                 10pct  5pct 2.5pct  1pct
## critical values 0.119 0.146  0.176 0.216
summary(ur.kpss(akiba$X_C2,type="tau",lags="short"))
## 
## ####################### 
## # KPSS Unit Root Test # 
## ####################### 
## 
## Test is of type: tau with 2 lags. 
## 
## Value of test-statistic is: 0.0702 
## 
## Critical value for a significance level of: 
##                 10pct  5pct 2.5pct  1pct
## critical values 0.119 0.146  0.176 0.216
summary(ur.kpss(akiba$U_L,type="tau",lags="short"))
## 
## ####################### 
## # KPSS Unit Root Test # 
## ####################### 
## 
## Test is of type: tau with 2 lags. 
## 
## Value of test-statistic is: 0.2169 
## 
## Critical value for a significance level of: 
##                 10pct  5pct 2.5pct  1pct
## critical values 0.119 0.146  0.176 0.216
summary(ur.kpss(akiba$W,type="tau",lags="short"))
## 
## ####################### 
## # KPSS Unit Root Test # 
## ####################### 
## 
## Test is of type: tau with 2 lags. 
## 
## Value of test-statistic is: 0.1881 
## 
## Critical value for a significance level of: 
##                 10pct  5pct 2.5pct  1pct
## critical values 0.119 0.146  0.176 0.216
summary(ur.kpss(akiba$G1_N,type="tau",lags="short"))
## 
## ####################### 
## # KPSS Unit Root Test # 
## ####################### 
## 
## Test is of type: tau with 2 lags. 
## 
## Value of test-statistic is: 0.1965 
## 
## Critical value for a significance level of: 
##                 10pct  5pct 2.5pct  1pct
## critical values 0.119 0.146  0.176 0.216
summary(ur.kpss(akiba$F1_N,type="tau",lags="short"))
## 
## ####################### 
## # KPSS Unit Root Test # 
## ####################### 
## 
## Test is of type: tau with 2 lags. 
## 
## Value of test-statistic is: 0.2525 
## 
## Critical value for a significance level of: 
##                 10pct  5pct 2.5pct  1pct
## critical values 0.119 0.146  0.176 0.216
summary(ur.kpss(akiba$M1524_N,type="tau",lags="short"))
## 
## ####################### 
## # KPSS Unit Root Test # 
## ####################### 
## 
## Test is of type: tau with 2 lags. 
## 
## Value of test-statistic is: 0.1306 
## 
## Critical value for a significance level of: 
##                 10pct  5pct 2.5pct  1pct
## critical values 0.119 0.146  0.176 0.216
summary(ur.kpss(akiba$E2_N,type="tau",lags="short"))
## 
## ####################### 
## # KPSS Unit Root Test # 
## ####################### 
## 
## Test is of type: tau with 2 lags. 
## 
## Value of test-statistic is: 0.2497 
## 
## Critical value for a significance level of: 
##                 10pct  5pct 2.5pct  1pct
## critical values 0.119 0.146  0.176 0.216

定数項

summary(ur.kpss(akiba$K2_N,type="mu",lags="short"))
## 
## ####################### 
## # KPSS Unit Root Test # 
## ####################### 
## 
## Test is of type: mu with 2 lags. 
## 
## Value of test-statistic is: 0.9662 
## 
## Critical value for a significance level of: 
##                 10pct  5pct 2.5pct  1pct
## critical values 0.347 0.463  0.574 0.739
summary(ur.kpss(akiba$A2_K2,type="mu",lags="short"))
## 
## ####################### 
## # KPSS Unit Root Test # 
## ####################### 
## 
## Test is of type: mu with 2 lags. 
## 
## Value of test-statistic is: 0.1426 
## 
## Critical value for a significance level of: 
##                 10pct  5pct 2.5pct  1pct
## critical values 0.347 0.463  0.574 0.739
summary(ur.kpss(akiba$C2_A2,type="mu",lags="short"))
## 
## ####################### 
## # KPSS Unit Root Test # 
## ####################### 
## 
## Test is of type: mu with 2 lags. 
## 
## Value of test-statistic is: 0.1533 
## 
## Critical value for a significance level of: 
##                 10pct  5pct 2.5pct  1pct
## critical values 0.347 0.463  0.574 0.739
summary(ur.kpss(akiba$X_C2,type="mu",lags="short"))
## 
## ####################### 
## # KPSS Unit Root Test # 
## ####################### 
## 
## Test is of type: mu with 2 lags. 
## 
## Value of test-statistic is: 0.4849 
## 
## Critical value for a significance level of: 
##                 10pct  5pct 2.5pct  1pct
## critical values 0.347 0.463  0.574 0.739
summary(ur.kpss(akiba$U_L,type="mu",lags="short"))
## 
## ####################### 
## # KPSS Unit Root Test # 
## ####################### 
## 
## Test is of type: mu with 2 lags. 
## 
## Value of test-statistic is: 0.8236 
## 
## Critical value for a significance level of: 
##                 10pct  5pct 2.5pct  1pct
## critical values 0.347 0.463  0.574 0.739
summary(ur.kpss(akiba$W,type="mu",lags="short"))
## 
## ####################### 
## # KPSS Unit Root Test # 
## ####################### 
## 
## Test is of type: mu with 2 lags. 
## 
## Value of test-statistic is: 0.9501 
## 
## Critical value for a significance level of: 
##                 10pct  5pct 2.5pct  1pct
## critical values 0.347 0.463  0.574 0.739
summary(ur.kpss(akiba$G1_N,type="mu",lags="short"))
## 
## ####################### 
## # KPSS Unit Root Test # 
## ####################### 
## 
## Test is of type: mu with 2 lags. 
## 
## Value of test-statistic is: 0.9838 
## 
## Critical value for a significance level of: 
##                 10pct  5pct 2.5pct  1pct
## critical values 0.347 0.463  0.574 0.739
summary(ur.kpss(akiba$F1_N,type="mu",lags="short"))
## 
## ####################### 
## # KPSS Unit Root Test # 
## ####################### 
## 
## Test is of type: mu with 2 lags. 
## 
## Value of test-statistic is: 0.9656 
## 
## Critical value for a significance level of: 
##                 10pct  5pct 2.5pct  1pct
## critical values 0.347 0.463  0.574 0.739
summary(ur.kpss(akiba$M1524_N,type="mu",lags="short"))
## 
## ####################### 
## # KPSS Unit Root Test # 
## ####################### 
## 
## Test is of type: mu with 2 lags. 
## 
## Value of test-statistic is: 0.8433 
## 
## Critical value for a significance level of: 
##                 10pct  5pct 2.5pct  1pct
## critical values 0.347 0.463  0.574 0.739
summary(ur.kpss(akiba$E2_N,type="mu",lags="short"))
## 
## ####################### 
## # KPSS Unit Root Test # 
## ####################### 
## 
## Test is of type: mu with 2 lags. 
## 
## Value of test-statistic is: 0.8474 
## 
## Critical value for a significance level of: 
##                 10pct  5pct 2.5pct  1pct
## critical values 0.347 0.463  0.574 0.739

3.Merriman (1988)の研究

変数の作成

capital$Cm_K2 <- capital$Cm/capital$K2
capital$X_Cm <- capital$X/capital$Cm
capital$Gm_N <- capital$Gm/capital$N*100
capital$L_N <- capital$L/(capital$N*10)*100
capital$N2029_N <- capital$N2029/capital$N
capital$V_N <- capital$V/capital$N*1000
capital$N1524_N <- capital$N1524/capital$N

データの年代をMerriman(1988)にそろえる

mer <- subset(capital, 1957<=YEAR & YEAR<=1982)

変数の対数変換

mer$LK2_N <- log(mer$K2_N)
mer$LCm_K2 <- log(mer$Cm_K2)
mer$LU_L <- log(mer$U_L)
mer$LGm_N <- log(mer$Gm_N)
mer$LL_N <- log(mer$L_N)
mer$LN2029_N <- log(mer$N2029_N)
mer$LM2029_N <- log(mer$M2029_N)
#対数変換用の0の処理1(X=0をX=1に)
mer$X_Cm_1 <- ifelse(mer$X==0,1,mer$X)/mer$Cm 
mer$LX_Cm_1 <- log(mer$X_Cm_1)

その他の変数の作成

mer$TREND=1:nrow(mer)
mer$Gm_N_LAG <- c(NA,mer$Gm_N[1:length(mer$Gm_N)-1])
mer$DGm_N <- (mer$Gm_N-mer$Gm_N_LAG)/mer$Gm_N_LAG #変化率
mer$LDGm_N <- mer$LGm_N-log(mer$Gm_N_LAG) #対数変化率

3.2 分析の再現

3.2.1 変数を対数変換した場合

表3-4 Merriman (1988)の再現データの記述統計 (p.372)

library(RcmdrMisc)
mer_sum <- numSummary(mer[,c("K2_N","Cm_K2","X_Cm","U_L","Gm_N","L_N","N2029_N"),drop=F],statistics=c("mean", "sd", "quantiles"), quantiles=c(0,.5,1))
mer_sum1 <- cbind(mer_sum$table,mer_sum$n)
print(round(mer_sum1,3))
##            mean     sd     0%     50%    100%   
## K2_N      2.107  0.461  1.439   1.982   2.916 26
## Cm_K2     0.565  0.043  0.478   0.566   0.675 26
## X_Cm      0.009  0.009  0.000   0.004   0.029 26
## U_L       1.626  0.428  1.118   1.425   2.355 26
## Gm_N    161.891 66.829 59.985 173.550 260.334 26
## L_N       0.485  0.007  0.476   0.484   0.499 26
## N2029_N   0.174  0.015  0.136   0.178   0.190 26

表3-5 Merriman (1988)の再現データでの回帰分析 (p.369)

OLS

mer_log1_ols1 <- lm(LK2_N~LCm_K2+LX_Cm_1+LU_L+LGm_N+LL_N+TREND+LN2029_N, data = mer)
mer_log1_ols2 <- lm(LK2_N~LCm_K2+LX_Cm_1+LU_L+LGm_N+LL_N+LN2029_N, data = mer)
mer_log1_ols3 <- lm(LK2_N~LCm_K2+LX_Cm_1+LU_L+LDGm_N+LL_N+TREND+LN2029_N, data = mer)
library(memisc)
mer_log1ols_model <- mtable("1"=mer_log1_ols1,"2"=mer_log1_ols2,"3"=mer_log1_ols3,coef.style="stat",signif.symbols=c("***"=.01,"**"=.05, "*"=.1),summary.stats=c("adj. R-squared","N"))
print(mer_log1ols_model)
## 
## Calls:
## 1: lm(formula = LK2_N ~ LCm_K2 + LX_Cm_1 + LU_L + LGm_N + LL_N + 
##     TREND + LN2029_N, data = mer)
## 2: lm(formula = LK2_N ~ LCm_K2 + LX_Cm_1 + LU_L + LGm_N + LL_N + 
##     LN2029_N, data = mer)
## 3: lm(formula = LK2_N ~ LCm_K2 + LX_Cm_1 + LU_L + LDGm_N + LL_N + 
##     TREND + LN2029_N, data = mer)
## 
## ======================================================
##                      1           2            3       
## ------------------------------------------------------
##   (Intercept)       0.184      3.822***    -0.395     
##                    (0.051)    (4.160)     (-0.542)    
##   LCm_K2           -0.048     -0.032       -0.208*    
##                   (-0.346)   (-0.236)     (-1.943)    
##   LX_Cm_1          -0.014     -0.015       -0.009     
##                   (-1.486)   (-1.560)     (-1.403)    
##   LU_L              0.109      0.049        0.058     
##                    (1.095)    (0.594)      (1.015)    
##   LGm_N             0.102     -0.397***               
##                    (0.215)  (-16.742)                 
##   LL_N             -0.974      0.010       -2.207**   
##                   (-0.708)    (0.010)     (-2.722)    
##   TREND            -0.035                  -0.028***  
##                   (-1.054)               (-16.565)    
##   LN2029_N          0.199      0.700***     0.196     
##                    (0.386)    (3.537)      (1.348)    
##   LDGm_N                                    0.781***  
##                                            (2.941)    
## ------------------------------------------------------
##   adj. R-squared    0.966      0.966        0.983     
##   N                26         26           25         
## ======================================================
##   Significance: *** = p < 0.01; ** = p < 0.05;   
##                 * = p < 0.1

ダービン・ワトソン比

dwtest(mer_log1_ols1)
## 
##  Durbin-Watson test
## 
## data:  mer_log1_ols1
## DW = 1.2149, p-value = 0.0006123
## alternative hypothesis: true autocorrelation is greater than 0
dwtest(mer_log1_ols2)
## 
##  Durbin-Watson test
## 
## data:  mer_log1_ols2
## DW = 1.3519, p-value = 0.003367
## alternative hypothesis: true autocorrelation is greater than 0
dwtest(mer_log1_ols3)
## 
##  Durbin-Watson test
## 
## data:  mer_log1_ols3
## DW = 1.3629, p-value = 0.003011
## alternative hypothesis: true autocorrelation is greater than 0

Prais-Winsten法

library(prais)
mer_log1_prais1 <- prais_winsten(LK2_N~LCm_K2+LX_Cm_1+LU_L+LGm_N+LL_N+TREND+LN2029_N, data = mer)
mer_log1_prais2 <- prais_winsten(LK2_N~LCm_K2+LX_Cm_1+LU_L+LGm_N+LL_N+LN2029_N, data = mer)
mer_log1_prais3 <- prais_winsten(LK2_N~LCm_K2+LX_Cm_1+LU_L+LDGm_N+LL_N+TREND+LN2029_N, data = mer)

Prais-Winsten法での(1)のモデル

summary(mer_log1_prais1)
## 
## Call:
## prais_winsten(formula = LK2_N ~ LCm_K2 + LX_Cm_1 + LU_L + LGm_N + 
##     LL_N + TREND + LN2029_N, data = mer)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.071401 -0.023727  0.009096  0.024390  0.066940 
## 
## AR(1) coefficient rho after 19 Iterations: 0.461
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)  
## (Intercept) -0.445409   3.238699  -0.138   0.8921  
## LCm_K2      -0.147699   0.112207  -1.316   0.2046  
## LX_Cm_1     -0.016904   0.007193  -2.350   0.0304 *
## LU_L         0.161222   0.098492   1.637   0.1190  
## LGm_N        0.238650   0.422558   0.565   0.5792  
## LL_N        -0.816586   1.425087  -0.573   0.5737  
## TREND       -0.044445   0.029715  -1.496   0.1521  
## LN2029_N     0.148879   0.487281   0.306   0.7635  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.03655 on 18 degrees of freedom
## Multiple R-squared:  0.9613, Adjusted R-squared:  0.9463 
## F-statistic:  63.9 on 7 and 18 DF,  p-value: 2.014e-11
## 
## Durbin-Watson statistic (original): 1.215 
## Durbin-Watson statistic (transformed): 1.463

Prais-Winsten法での(2)のモデル

summary(mer_log1_prais2)
## 
## Call:
## prais_winsten(formula = LK2_N ~ LCm_K2 + LX_Cm_1 + LU_L + LGm_N + 
##     LL_N + LN2029_N, data = mer)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.08077 -0.01980  0.00768  0.01941  0.07410 
## 
## AR(1) coefficient rho after 20 Iterations: 0.3597
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  4.038922   1.022543   3.950 0.000859 ***
## LCm_K2      -0.125769   0.120260  -1.046 0.308772    
## LX_Cm_1     -0.017393   0.007828  -2.222 0.038633 *  
## LU_L         0.075663   0.087912   0.861 0.400152    
## LGm_N       -0.395499   0.029762 -13.289 4.54e-11 ***
## LL_N         0.279917   1.158227   0.242 0.811619    
## LN2029_N     0.763891   0.216576   3.527 0.002252 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.038 on 19 degrees of freedom
## Multiple R-squared:  0.9618, Adjusted R-squared:  0.9497 
## F-statistic: 79.66 on 6 and 19 DF,  p-value: 1.921e-12
## 
## Durbin-Watson statistic (original): 1.352 
## Durbin-Watson statistic (transformed): 1.549

Prais-Winsten法での(3)のモデル

summary(mer_log1_prais3)
## 
## Call:
## prais_winsten(formula = LK2_N ~ LCm_K2 + LX_Cm_1 + LU_L + LDGm_N + 
##     LL_N + TREND + LN2029_N, data = mer)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.047997 -0.014791 -0.001091  0.014248  0.046265 
## 
## AR(1) coefficient rho after 10 Iterations: 0.3231
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -0.101579   0.777864  -0.131   0.8976    
## LCm_K2      -0.196721   0.093693  -2.100   0.0510 .  
## LX_Cm_1     -0.010774   0.005757  -1.871   0.0786 .  
## LU_L         0.076792   0.061695   1.245   0.2301    
## LDGm_N       0.736844   0.244411   3.015   0.0078 ** 
## LL_N        -1.847362   0.883264  -2.092   0.0518 .  
## TREND       -0.027444   0.001812 -15.146 2.65e-11 ***
## LN2029_N     0.219515   0.159862   1.373   0.1875    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.02651 on 17 degrees of freedom
## Multiple R-squared:  0.9838, Adjusted R-squared:  0.9772 
## F-statistic: 147.8 on 7 and 17 DF,  p-value: 5.745e-14
## 
## Durbin-Watson statistic (original): 1.363 
## Durbin-Watson statistic (transformed):  1.62

3.2.2 変数を対数変換しない場合

表3-6 Merriman (1988)の再現データでの線形の回帰分析 (p.369)

OLS

mer_ols1 <- lm(K2_N~Cm_K2+X_Cm+U_L+Gm_N+L_N+TREND+N2029_N, data = mer)
mer_ols2 <- lm(K2_N~Cm_K2+X_Cm+U_L+Gm_N+L_N+N2029_N, data = mer)
mer_ols3 <- lm(K2_N~Cm_K2+X_Cm+U_L+DGm_N+L_N+TREND+N2029_N, data = mer)
library(memisc)
mer_ols_model <- mtable("1"=mer_ols1,"2"=mer_ols2,"3"=mer_ols3,coef.style="stat",signif.symbols=c("***"=.01,"**"=.05, "*"=.1),summary.stats=c("adj. R-squared","N"))
print(mer_ols_model)
## 
## Calls:
## 1: lm(formula = K2_N ~ Cm_K2 + X_Cm + U_L + Gm_N + L_N + TREND + 
##     N2029_N, data = mer)
## 2: lm(formula = K2_N ~ Cm_K2 + X_Cm + U_L + Gm_N + L_N + N2029_N, 
##     data = mer)
## 3: lm(formula = K2_N ~ Cm_K2 + X_Cm + U_L + DGm_N + L_N + TREND + 
##     N2029_N, data = mer)
## 
## =======================================================
##                       1           2            3       
## -------------------------------------------------------
##   (Intercept)       3.902       3.235        7.951***  
##                    (1.723)     (1.474)      (4.896)    
##   Cm_K2            -0.744      -0.887*      -1.089***  
##                   (-1.467)    (-1.800)     (-3.087)    
##   X_Cm             -4.286*     -4.143*      -2.865*    
##                   (-1.892)    (-1.821)     (-1.793)    
##   U_L               0.192**     0.214**      0.125*    
##                    (2.128)     (2.424)      (2.093)    
##   Gm_N             -0.004      -0.007***               
##                   (-1.224)   (-19.104)                 
##   L_N              -2.418      -1.421       -9.518***  
##                   (-0.635)    (-0.382)     (-3.330)    
##   TREND            -0.031                   -0.064***  
##                   (-1.101)                (-20.410)    
##   N2029_N           3.166       5.184**     -0.035     
##                    (1.139)     (2.470)     (-0.023)    
##   DGm_N                                      1.471***  
##                                             (3.123)    
## -------------------------------------------------------
##   adj. R-squared    0.973       0.972        0.987     
##   N                26          26           25         
## =======================================================
##   Significance: *** = p < 0.01; ** = p < 0.05;   
##                 * = p < 0.1

ダービン・ワトソン比

dwtest(mer_ols1)
## 
##  Durbin-Watson test
## 
## data:  mer_ols1
## DW = 1.2052, p-value = 0.0002535
## alternative hypothesis: true autocorrelation is greater than 0
dwtest(mer_ols2)
## 
##  Durbin-Watson test
## 
## data:  mer_ols2
## DW = 1.2254, p-value = 0.001074
## alternative hypothesis: true autocorrelation is greater than 0
dwtest(mer_ols3)
## 
##  Durbin-Watson test
## 
## data:  mer_ols3
## DW = 1.609, p-value = 0.02135
## alternative hypothesis: true autocorrelation is greater than 0

Prais-Winsten法

mer_prais1 <- prais_winsten(K2_N~Cm_K2+X_Cm+U_L+Gm_N+L_N+TREND+N2029_N, data = mer)
mer_prais2 <- prais_winsten(K2_N~Cm_K2+X_Cm+U_L+Gm_N+L_N+N2029_N, data = mer)
mer_prais3 <- prais_winsten(K2_N~Cm_K2+X_Cm+U_L+DGm_N+L_N+TREND+N2029_N, data = mer)

Prais-Winsten法での(1)のモデル

summary(mer_prais1)
## 
## Call:
## prais_winsten(formula = K2_N ~ Cm_K2 + X_Cm + U_L + Gm_N + L_N + 
##     TREND + N2029_N, data = mer)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.123498 -0.035520 -0.001859  0.024738  0.188755 
## 
## AR(1) coefficient rho after 13 Iterations: 0.3967
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)  
## (Intercept)  3.274780   2.479454   1.321   0.2031  
## Cm_K2       -0.931165   0.427209  -2.180   0.0428 *
## X_Cm        -5.027813   1.785530  -2.816   0.0114 *
## U_L          0.205798   0.094865   2.169   0.0437 *
## Gm_N        -0.003405   0.003520  -0.967   0.3461  
## L_N         -1.064368   4.379921  -0.243   0.8107  
## TREND       -0.033732   0.032272  -1.045   0.3097  
## N2029_N      3.404385   3.134480   1.086   0.2918  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.0709 on 18 degrees of freedom
## Multiple R-squared:  0.9742, Adjusted R-squared:  0.9641 
## F-statistic: 97.01 on 7 and 18 DF,  p-value: 5.463e-13
## 
## Durbin-Watson statistic (original): 1.205 
## Durbin-Watson statistic (transformed): 1.508

Prais-Winsten法での(2)のモデル

summary(mer_prais2)
## 
## Call:
## prais_winsten(formula = K2_N ~ Cm_K2 + X_Cm + U_L + Gm_N + L_N + 
##     N2029_N, data = mer)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.09398 -0.03153 -0.01453  0.03412  0.19364 
## 
## AR(1) coefficient rho after 13 Iterations: 0.4199
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  2.4230734  2.3880891   1.015   0.3230    
## Cm_K2       -1.0660727  0.4074404  -2.617   0.0170 *  
## X_Cm        -4.9411178  1.7650477  -2.799   0.0114 *  
## U_L          0.2264578  0.0936766   2.417   0.0258 *  
## Gm_N        -0.0070432  0.0004671 -15.078 5.03e-12 ***
## L_N          0.2852685  4.2763262   0.067   0.9475    
## N2029_N      5.5520530  2.4397945   2.276   0.0346 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.07099 on 19 degrees of freedom
## Multiple R-squared:  0.9721, Adjusted R-squared:  0.9632 
## F-statistic: 110.2 on 6 and 19 DF,  p-value: 9.918e-14
## 
## Durbin-Watson statistic (original): 1.225 
## Durbin-Watson statistic (transformed):  1.61

Prais-Winsten法での(3)のモデル

summary(mer_prais3)
## 
## Call:
## prais_winsten(formula = K2_N ~ Cm_K2 + X_Cm + U_L + DGm_N + L_N + 
##     TREND + N2029_N, data = mer)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.074510 -0.031614 -0.003724  0.026923  0.079876 
## 
## AR(1) coefficient rho after 16 Iterations: 0.2165
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  7.339156   1.705540   4.303 0.000482 ***
## Cm_K2       -0.984568   0.328437  -2.998 0.008094 ** 
## X_Cm        -3.252575   1.490678  -2.182 0.043439 *  
## U_L          0.136458   0.063259   2.157 0.045601 *  
## DGm_N        1.417693   0.453660   3.125 0.006165 ** 
## L_N         -8.491412   3.066510  -2.769 0.013132 *  
## TREND       -0.063415   0.003315 -19.127  6.2e-13 ***
## N2029_N      0.173593   1.634103   0.106 0.916642    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.05055 on 17 degrees of freedom
## Multiple R-squared:  0.9892, Adjusted R-squared:  0.9848 
## F-statistic: 223.5 on 7 and 17 DF,  p-value: 1.818e-15
## 
## Durbin-Watson statistic (original): 1.609 
## Durbin-Watson statistic (transformed): 1.687

3.3 分析の問題点

3.3.1 系列相関への対処

Breusch-Godfrey検定 (p.368)

bgtest(mer_log1_ols1,order=2)
## 
##  Breusch-Godfrey test for serial correlation of order up to 2
## 
## data:  mer_log1_ols1
## LM test = 5.573, df = 2, p-value = 0.06164
bgtest(mer_log1_ols2,order=2)
## 
##  Breusch-Godfrey test for serial correlation of order up to 2
## 
## data:  mer_log1_ols2
## LM test = 4.058, df = 2, p-value = 0.1315
bgtest(mer_log1_ols3,order=2)
## 
##  Breusch-Godfrey test for serial correlation of order up to 2
## 
## data:  mer_log1_ols3
## LM test = 5.3587, df = 2, p-value = 0.06861

3.3.2. 多重共線性への対処

表3-7 Merriman (1988)の再現データでの説明変数同士の相関 (p.367)

mer_log1_cor <- cor(mer[,c("LCm_K2","LX_Cm_1","LU_L","LGm_N","LDGm_N","LL_N","TREND","LN2029_N")],use="pairwise.complete.obs")
print(round(mer_log1_cor,3))
##          LCm_K2 LX_Cm_1   LU_L  LGm_N LDGm_N   LL_N  TREND LN2029_N
## LCm_K2    1.000   0.083 -0.288 -0.526  0.374  0.016 -0.531    0.259
## LX_Cm_1   0.083   1.000 -0.168 -0.420  0.244 -0.021 -0.481    0.601
## LU_L     -0.288  -0.168  1.000  0.177 -0.479 -0.727  0.372   -0.677
## LGm_N    -0.526  -0.420  0.177  1.000 -0.597  0.127  0.974   -0.491
## LDGm_N    0.374   0.244 -0.479 -0.597  1.000  0.472 -0.663    0.434
## LL_N      0.016  -0.021 -0.727  0.127  0.472  1.000 -0.023    0.225
## TREND    -0.531  -0.481  0.372  0.974 -0.663 -0.023  1.000   -0.659
## LN2029_N  0.259   0.601 -0.677 -0.491  0.434  0.225 -0.659    1.000

表3-8 Merriman (1988)の再現データでのVIF (p.367)

(1)のモデルのVIF

mer_log1ols1_vif<-vif(mer_log1_ols1)
print(round(mer_log1ols1_vif,3))
##   LCm_K2  LX_Cm_1     LU_L    LGm_N     LL_N    TREND LN2029_N 
##    1.667    2.028   10.697  800.671    6.303 1021.123   35.762

(2)のモデルのVIF

mer_log1ols2_vif<-vif(mer_log1_ols2)
print(round(mer_log1ols2_vif,3))
##   LCm_K2  LX_Cm_1     LU_L    LGm_N     LL_N LN2029_N 
##    1.649    2.018    7.131    1.996    3.402    5.255

(3)のモデルのVIF

mer_log1ols3_vif<-vif(mer_log1_ols3)
print(round(mer_log1ols3_vif,3))
##   LCm_K2  LX_Cm_1     LU_L   LDGm_N     LL_N    TREND LN2029_N 
##    2.024    1.899    7.205    2.797    4.418    4.699    5.878

3.3.3. 説明変数の内生性

変数の準備

mer$LK2_NLAG <- c(NA,mer$LK2_N[1:length(mer$LK2_N)-1])
mer$LCm_K2LAG <- c(NA,mer$LCm_K2[1:length(mer$LCm_K2)-1]) 
mer$LX_Cm_1LAG <- c(NA,mer$LX_Cm_1[1:length(mer$LX_Cm_1)-1])
mer$LU_LLAG <- c(NA,mer$LU_L[1:length(mer$LU_L)-1])
mer$LGm_NLAG <- c(NA,mer$LGm_N[1:length(mer$LGm_N)-1])
mer$LL_NLAG <- c(NA,mer$LL_N[1:length(mer$LL_N)-1])
mer$LN2029_NLAG <- c(NA,mer$LN2029_N[1:length(mer$LN2029_N)-1])
mer$LV_N <- log(mer$V_N)
mer$LN <- log(mer$N)
mer$LN1524_N <- log(mer$N1524_N)

パッケージestimatrによるHausman検定 (pp.346-345)

  • 内生変数はLCm_K2
  • 外生変数はLX_Cm_1,LU_L,LGm_N,LL_N,TREND,LN2029_N
  • 操作変数はLK2_NLAG,LCm_K2LAG,LX_Cm_1LAG,LU_LLAG,LGm_NLAG,LL_NLAG,LN2029_NLAG,LV,LN,LN1524_N
library(estimatr)
iv_estm1_1 <- iv_robust(LK2_N~LCm_K2+LX_Cm_1+LU_L+LGm_N+LL_N+TREND+LN2029_N | LX_Cm_1+LU_L+LGm_N+LL_N+TREND+LN2029_N+LK2_NLAG+LCm_K2LAG+LX_Cm_1LAG+LU_LLAG+LGm_NLAG+LL_NLAG+LN2029_NLAG+LV_N+LN+LN1524_N,se_type = "classical",data=mer,diagnostics = TRUE)
summary(iv_estm1_1)
## 
## Call:
## iv_robust(formula = LK2_N ~ LCm_K2 + LX_Cm_1 + LU_L + LGm_N + 
##     LL_N + TREND + LN2029_N | LX_Cm_1 + LU_L + LGm_N + LL_N + 
##     TREND + LN2029_N + LK2_NLAG + LCm_K2LAG + LX_Cm_1LAG + LU_LLAG + 
##     LGm_NLAG + LL_NLAG + LN2029_NLAG + LV_N + LN + LN1524_N, 
##     data = mer, se_type = "classical", diagnostics = TRUE)
## 
## Standard error type:  classical 
## 
## Coefficients:
##              Estimate Std. Error  t value Pr(>|t|) CI Lower CI Upper DF
## (Intercept)  1.717798   3.291872  0.52183   0.6085 -5.22744 8.663040 17
## LCm_K2      -0.006202   0.203851 -0.03043   0.9761 -0.43629 0.423886 17
## LX_Cm_1     -0.011027   0.008722 -1.26417   0.2232 -0.02943 0.007376 17
## LU_L         0.113545   0.094769  1.19813   0.2473 -0.08640 0.313489 17
## LGm_N       -0.091430   0.437916 -0.20878   0.8371 -1.01535 0.832491 17
## LL_N        -0.459567   1.280878 -0.35879   0.7242 -3.16198 2.242850 17
## TREND       -0.022344   0.030711 -0.72754   0.4768 -0.08714 0.042451 17
## LN2029_N     0.387197   0.474387  0.81621   0.4257 -0.61367 1.388065 17
## 
## Multiple R-squared:  0.9794 ,    Adjusted R-squared:  0.9709 
## F-statistic: 115.4 on 7 and 17 DF,  p-value: 4.499e-13
## 
## Diagnostics:
##                  numdf dendf  value p.value
## Weak instruments    10     8  0.730   0.686
## Wu-Hausman           1    16  2.551   0.130
## Overidentifying      9    NA 13.183   0.155

操作変数からLCm_K2LAGを除いた場合

iv_estm1_2 <- iv_robust(LK2_N~LCm_K2+LX_Cm_1+LU_L+LGm_N+LL_N+TREND+LN2029_N | LX_Cm_1+LU_L+LGm_N+LL_N+TREND+LN2029_N+LK2_NLAG+LX_Cm_1LAG+LU_LLAG+LGm_NLAG+LL_NLAG+LN2029_NLAG+LV_N+LN+LN1524_N,se_type = "classical",data=mer,diagnostics = TRUE)
summary(iv_estm1_2)
## 
## Call:
## iv_robust(formula = LK2_N ~ LCm_K2 + LX_Cm_1 + LU_L + LGm_N + 
##     LL_N + TREND + LN2029_N | LX_Cm_1 + LU_L + LGm_N + LL_N + 
##     TREND + LN2029_N + LK2_NLAG + LX_Cm_1LAG + LU_LLAG + LGm_NLAG + 
##     LL_NLAG + LN2029_NLAG + LV_N + LN + LN1524_N, data = mer, 
##     se_type = "classical", diagnostics = TRUE)
## 
## Standard error type:  classical 
## 
## Coefficients:
##              Estimate Std. Error  t value Pr(>|t|) CI Lower CI Upper DF
## (Intercept)  1.750772   3.322579  0.52693   0.6050 -5.25926 8.760801 17
## LCm_K2       0.008187   0.206670  0.03961   0.9689 -0.42785 0.444223 17
## LX_Cm_1     -0.011069   0.008803 -1.25740   0.2256 -0.02964 0.007504 17
## LU_L         0.115905   0.095698  1.21115   0.2424 -0.08600 0.317810 17
## LGm_N       -0.091031   0.441960 -0.20597   0.8393 -1.02349 0.841424 17
## LL_N        -0.433978   1.293180 -0.33559   0.7413 -3.16235 2.294393 17
## TREND       -0.022257   0.030995 -0.71809   0.4825 -0.08765 0.043136 17
## LN2029_N     0.393327   0.478841  0.82141   0.4228 -0.61694 1.403593 17
## 
## Multiple R-squared:  0.979 , Adjusted R-squared:  0.9704 
## F-statistic: 113.3 on 7 and 17 DF,  p-value: 5.238e-13
## 
## Diagnostics:
##                  numdf dendf  value p.value
## Weak instruments     9     9  0.897   0.563
## Wu-Hausman           1    16  2.920   0.107
## Overidentifying      8    NA 12.154   0.144

操作変数からLCm_K2LAGを除いた場合

iv_estm2_2 <- iv_robust(LK2_N~LCm_K2+LU_L+LGm_N+LL_N+TREND+LN2029_N | LU_L+LGm_N+LL_N+TREND+LN2029_N+LK2_NLAG+LU_LLAG+LGm_NLAG+LL_NLAG+LN2029_NLAG+LV_N+LN+LN1524_N,se_type = "classical",data=mer,diagnostics = TRUE)
summary(iv_estm2_2)
## 
## Call:
## iv_robust(formula = LK2_N ~ LCm_K2 + LU_L + LGm_N + LL_N + TREND + 
##     LN2029_N | LU_L + LGm_N + LL_N + TREND + LN2029_N + LK2_NLAG + 
##     LU_LLAG + LGm_NLAG + LL_NLAG + LN2029_NLAG + LV_N + LN + 
##     LN1524_N, data = mer, se_type = "classical", diagnostics = TRUE)
## 
## Standard error type:  classical 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|) CI Lower CI Upper DF
## (Intercept)  1.08008    3.25161  0.3322   0.7436 -5.75131  7.91147 18
## LCm_K2      -0.04849    0.24590 -0.1972   0.8459 -0.56511  0.46814 18
## LU_L         0.07536    0.09278  0.8122   0.4273 -0.11957  0.27029 18
## LGm_N       -0.06626    0.43458 -0.1525   0.8805 -0.97927  0.84675 18
## LL_N        -0.84567    1.26576 -0.6681   0.5125 -3.50495  1.81360 18
## TREND       -0.02433    0.03048 -0.7982   0.4352 -0.08838  0.03971 18
## LN2029_N     0.20966    0.45553  0.4603   0.6508 -0.74736  1.16669 18
## 
## Multiple R-squared:  0.9785 ,    Adjusted R-squared:  0.9713 
## F-statistic: 136.1 on 6 and 18 DF,  p-value: 5.325e-14
## 
## Diagnostics:
##                  numdf dendf  value p.value
## Weak instruments     8    11  0.655   0.720
## Wu-Hausman           1    17  0.820   0.378
## Overidentifying      7    NA 11.957   0.102

パッケージestimatrを使わないHausman検定 (pp.346-345)

instr1_1 <- lm(LCm_K2~LX_Cm_1+LU_L+LGm_N+LL_N+TREND+LN2029_N +LK2_NLAG+LCm_K2LAG+LX_Cm_1LAG+LU_LLAG+LGm_NLAG+LL_NLAG+LN2029_NLAG +LV_N+LN+LN1524_N,data=mer)
resid1_1 <- c(NA,instr1_1$residuals)
endog1_1 <- lm(LK2_N~resid1_1+LCm_K2+LX_Cm_1+LU_L+LGm_N+LL_N+TREND+LN2029_N, data = mer)
summary(endog1_1)
## 
## Call:
## lm(formula = LK2_N ~ resid1_1 + LCm_K2 + LX_Cm_1 + LU_L + LGm_N + 
##     LL_N + TREND + LN2029_N, data = mer)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.051284 -0.011377  0.002231  0.020678  0.048874 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)
## (Intercept)  1.717798   2.937572   0.585    0.567
## resid1_1    -0.401820   0.251559  -1.597    0.130
## LCm_K2      -0.006202   0.181911  -0.034    0.973
## LX_Cm_1     -0.011027   0.007784  -1.417    0.176
## LU_L         0.113545   0.084569   1.343    0.198
## LGm_N       -0.091430   0.390783  -0.234    0.818
## LL_N        -0.459567   1.143019  -0.402    0.693
## TREND       -0.022344   0.027406  -0.815    0.427
## LN2029_N     0.387197   0.423329   0.915    0.374
## 
## Residual standard error: 0.03245 on 16 degrees of freedom
##   (1 observation deleted due to missingness)
## Multiple R-squared:  0.9846, Adjusted R-squared:  0.9768 
## F-statistic: 127.5 on 8 and 16 DF,  p-value: 5.132e-13
library(lmtest)
WuHau1_1 <- waldtest(endog1_1, .~.-resid1_1)
print(WuHau1_1)
## Wald test
## 
## Model 1: LK2_N ~ resid1_1 + LCm_K2 + LX_Cm_1 + LU_L + LGm_N + LL_N + TREND + 
##     LN2029_N
## Model 2: LK2_N ~ LCm_K2 + LX_Cm_1 + LU_L + LGm_N + LL_N + TREND + LN2029_N
##   Res.Df Df      F Pr(>F)
## 1     16                 
## 2     17 -1 2.5514 0.1298

Prais-Winsten法を使用

endog1_1_prais <- prais_winsten(LK2_N~resid1_1+LCm_K2+LX_Cm_1+LU_L+LGm_N+LL_N+TREND+LN2029_N, data = mer)

Prais-Winsten法の結果表示

summary(endog1_1_prais)
## 
## Call:
## prais_winsten(formula = LK2_N ~ resid1_1 + LCm_K2 + LX_Cm_1 + 
##     LU_L + LGm_N + LL_N + TREND + LN2029_N, data = mer)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.049880 -0.012569  0.001799  0.019935  0.051359 
## 
## AR(1) coefficient rho after 15 Iterations: 0.1242
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)
## (Intercept)  1.181537   2.944018   0.401    0.693
## resid1_1    -0.356966   0.248229  -1.438    0.170
## LCm_K2      -0.034753   0.178656  -0.195    0.848
## LX_Cm_1     -0.011381   0.007498  -1.518    0.149
## LU_L         0.125585   0.086526   1.451    0.166
## LGm_N       -0.013795   0.391506  -0.035    0.972
## LL_N        -0.563051   1.172579  -0.480    0.638
## TREND       -0.027894   0.027433  -1.017    0.324
## LN2029_N     0.315817   0.426646   0.740    0.470
## 
## Residual standard error: 0.03227 on 16 degrees of freedom
## Multiple R-squared:  0.9822, Adjusted R-squared:  0.9733 
## F-statistic: 110.4 on 8 and 16 DF,  p-value: 1.586e-12
## 
## Durbin-Watson statistic (original):   1.7 
## Durbin-Watson statistic (transformed): 1.741

操作変数LCm_K2LAGを除いた場合

instr1_2 <- lm(LCm_K2~LX_Cm_1+LU_L+LGm_N+LL_N+TREND+LN2029_N +LK2_NLAG+LX_Cm_1LAG+LU_LLAG+LGm_NLAG+LL_NLAG+LN2029_NLAG +LV_N+LN+LN1524_N,data=mer)
resid1_2 <- c(NA,instr1_2$residuals)
endog1_2 <- lm(LK2_N~resid1_2+LCm_K2+LX_Cm_1+LU_L+LGm_N+LL_N+TREND+LN2029_N, data = mer)
summary(endog1_2)
## 
## Call:
## lm(formula = LK2_N ~ resid1_2 + LCm_K2 + LX_Cm_1 + LU_L + LGm_N + 
##     LL_N + TREND + LN2029_N, data = mer)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.053369 -0.010808  0.001773  0.021176  0.050688 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)
## (Intercept)  1.750772   2.909107   0.602    0.556
## resid1_2    -0.425824   0.249207  -1.709    0.107
## LCm_K2       0.008187   0.180951   0.045    0.964
## LX_Cm_1     -0.011069   0.007708  -1.436    0.170
## LU_L         0.115905   0.083789   1.383    0.186
## LGm_N       -0.091031   0.386961  -0.235    0.817
## LL_N        -0.433978   1.132253  -0.383    0.707
## TREND       -0.022257   0.027138  -0.820    0.424
## LN2029_N     0.393327   0.419253   0.938    0.362
## 
## Residual standard error: 0.03213 on 16 degrees of freedom
##   (1 observation deleted due to missingness)
## Multiple R-squared:  0.9849, Adjusted R-squared:  0.9773 
## F-statistic:   130 on 8 and 16 DF,  p-value: 4.389e-13
WuHau1_2 <- waldtest(endog1_2, .~.-resid1_2)
print(WuHau1_2)
## Wald test
## 
## Model 1: LK2_N ~ resid1_2 + LCm_K2 + LX_Cm_1 + LU_L + LGm_N + LL_N + TREND + 
##     LN2029_N
## Model 2: LK2_N ~ LCm_K2 + LX_Cm_1 + LU_L + LGm_N + LL_N + TREND + LN2029_N
##   Res.Df Df      F Pr(>F)
## 1     16                 
## 2     17 -1 2.9197 0.1068

Prais-Winsten法を使用

endog1_2_prais <- prais_winsten(LK2_N~resid1_2+LCm_K2+LX_Cm_1+LU_L+LGm_N+LL_N+TREND+LN2029_N, data = mer)

Prais-Winsten法の結果表示

summary(endog1_2_prais)
## 
## Call:
## prais_winsten(formula = LK2_N ~ resid1_2 + LCm_K2 + LX_Cm_1 + 
##     LU_L + LGm_N + LL_N + TREND + LN2029_N, data = mer)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.052100 -0.013242  0.001475  0.019038  0.052440 
## 
## AR(1) coefficient rho after 14 Iterations: 0.1011
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)
## (Intercept)  1.307253   2.919086   0.448    0.660
## resid1_2    -0.388674   0.247539  -1.570    0.136
## LCm_K2      -0.014688   0.179190  -0.082    0.936
## LX_Cm_1     -0.011335   0.007489  -1.514    0.150
## LU_L         0.125319   0.085472   1.466    0.162
## LGm_N       -0.027645   0.388233  -0.071    0.944
## LL_N        -0.526413   1.156857  -0.455    0.655
## TREND       -0.026789   0.027209  -0.985    0.339
## LN2029_N     0.334756   0.422564   0.792    0.440
## 
## Residual standard error: 0.03201 on 16 degrees of freedom
## Multiple R-squared:  0.983,  Adjusted R-squared:  0.9744 
## F-statistic: 115.4 on 8 and 16 DF,  p-value: 1.119e-12
## 
## Durbin-Watson statistic (original): 1.741 
## Durbin-Watson statistic (transformed): 1.772

操作変数からLCm_K2LAGを除いた場合

instr2_2 <- lm(LCm_K2~LU_L+LGm_N+LL_N+TREND+LN2029_N +LK2_NLAG+LU_LLAG+LGm_NLAG+LL_NLAG+LN2029_NLAG +LV_N+LN+LN1524_N,data=mer)
resid2_2 <- c(NA,instr2_2$residuals)
endog2_2 <- lm(LK2_N~resid2_2+LCm_K2+LU_L+LGm_N+LL_N+TREND+LN2029_N, data = mer)
summary(endog2_2)
## 
## Call:
## lm(formula = LK2_N ~ resid2_2 + LCm_K2 + LU_L + LGm_N + LL_N + 
##     TREND + LN2029_N, data = mer)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.051284 -0.013124 -0.001968  0.016589  0.054968 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)
## (Intercept)  1.08008    3.12085   0.346    0.734
## resid2_2    -0.25970    0.28680  -0.906    0.378
## LCm_K2      -0.04849    0.23601  -0.205    0.840
## LU_L         0.07536    0.08905   0.846    0.409
## LGm_N       -0.06626    0.41710  -0.159    0.876
## LL_N        -0.84567    1.21486  -0.696    0.496
## TREND       -0.02433    0.02926  -0.832    0.417
## LN2029_N     0.20966    0.43721   0.480    0.638
## 
## Residual standard error: 0.03467 on 17 degrees of freedom
##   (1 observation deleted due to missingness)
## Multiple R-squared:  0.9813, Adjusted R-squared:  0.9735 
## F-statistic: 127.2 on 7 and 17 DF,  p-value: 2.007e-13
WuHau2_2 <- waldtest(endog2_2, .~.-resid2_2)
print(WuHau2_2)
## Wald test
## 
## Model 1: LK2_N ~ resid2_2 + LCm_K2 + LU_L + LGm_N + LL_N + TREND + LN2029_N
## Model 2: LK2_N ~ LCm_K2 + LU_L + LGm_N + LL_N + TREND + LN2029_N
##   Res.Df Df      F Pr(>F)
## 1     17                 
## 2     18 -1 0.8199 0.3779

3.3.4 単位根の存在

表3-9 Merriman(1988)の再現データのADF検定 (p.364)

トレンドと定数項

CADFtest(mer$LK2_N, type="trend", max.lag.y=4, criterion="MAIC")
## 
##  ADF test
## 
## data:  mer$LK2_N
## ADF(0) = -3.6819, p-value = 0.04666
## alternative hypothesis: true delta is less than 0
## sample estimates:
##      delta 
## -0.7593317
CADFtest(mer$LCm_K2, type="trend", max.lag.y=4, criterion="MAIC")
## 
##  ADF test
## 
## data:  mer$LCm_K2
## ADF(1) = -2.801, p-value = 0.2119
## alternative hypothesis: true delta is less than 0
## sample estimates:
##      delta 
## -0.9108214
CADFtest(mer$LX_Cm_1, type="trend", max.lag.y=4, criterion="MAIC")
## 
##  ADF test
## 
## data:  mer$LX_Cm_1
## ADF(1) = -2.4244, p-value = 0.3578
## alternative hypothesis: true delta is less than 0
## sample estimates:
##      delta 
## -0.7592315
CADFtest(mer$LU_L, type="trend", max.lag.y=4, criterion="MAIC")
## 
##  ADF test
## 
## data:  mer$LU_L
## ADF(0) = -2.4265, p-value = 0.3568
## alternative hypothesis: true delta is less than 0
## sample estimates:
##      delta 
## -0.3148128
CADFtest(mer$LGm_N, type="trend", max.lag.y=4, criterion="MAIC")
## 
##  ADF test
## 
## data:  mer$LGm_N
## ADF(0) = -0.55666, p-value = 0.9711
## alternative hypothesis: true delta is less than 0
## sample estimates:
##      delta 
## -0.0380436
CADFtest(mer$LDGm_N, type="trend", max.lag.y=4, criterion="MAIC") 
## 
##  ADF test
## 
## data:  mer$LDGm_N
## ADF(2) = -1.8533, p-value = 0.6404
## alternative hypothesis: true delta is less than 0
## sample estimates:
##     delta 
## -0.704629
CADFtest(mer$LL_N, type="trend", max.lag.y=4, criterion="MAIC")
## 
##  ADF test
## 
## data:  mer$LL_N
## ADF(0) = -1.5455, p-value = 0.7797
## alternative hypothesis: true delta is less than 0
## sample estimates:
##      delta 
## -0.2116962
CADFtest(mer$LN2029_N, type="trend", max.lag.y=4, criterion="MAIC")
## 
##  ADF test
## 
## data:  mer$LN2029_N
## ADF(2) = -0.17394, p-value = 0.9891
## alternative hypothesis: true delta is less than 0
## sample estimates:
##       delta 
## -0.01438287

定数項

CADFtest(mer$LK2_N, type="drift", max.lag.y=4, criterion="MAIC")
## 
##  ADF test
## 
## data:  mer$LK2_N
## ADF(2) = -1.2425, p-value = 0.6356
## alternative hypothesis: true delta is less than 0
## sample estimates:
##       delta 
## -0.07782813
CADFtest(mer$LCm_K2, type="drift", max.lag.y=4, criterion="MAIC")
## 
##  ADF test
## 
## data:  mer$LCm_K2
## ADF(3) = -0.69682, p-value = 0.8268
## alternative hypothesis: true delta is less than 0
## sample estimates:
##      delta 
## -0.1970884
CADFtest(mer$LX_Cm_1, type="drift", max.lag.y=4, criterion="MAIC")
## 
##  ADF test
## 
## data:  mer$LX_Cm_1
## ADF(1) = -2.0727, p-value = 0.2565
## alternative hypothesis: true delta is less than 0
## sample estimates:
##      delta 
## -0.6180107
CADFtest(mer$LU_L, type="drift", max.lag.y=4, criterion="MAIC")
## 
##  ADF test
## 
## data:  mer$LU_L
## ADF(0) = -0.020004, p-value = 0.9464
## alternative hypothesis: true delta is less than 0
## sample estimates:
##        delta 
## -0.001866841
CADFtest(mer$LGm_N, type="drift", max.lag.y=4, criterion="MAIC")
## 
##  ADF test
## 
## data:  mer$LGm_N
## ADF(3) = -1.6775, p-value = 0.4275
## alternative hypothesis: true delta is less than 0
## sample estimates:
##       delta 
## -0.04380674
CADFtest(mer$LDGm_N, type="drift", max.lag.y=4, criterion="MAIC")
## 
##  ADF test
## 
## data:  mer$LDGm_N
## ADF(2) = -1.0631, p-value = 0.709
## alternative hypothesis: true delta is less than 0
## sample estimates:
##      delta 
## -0.2451331
CADFtest(mer$LL_N, type="drift", max.lag.y=4, criterion="MAIC")
## 
##  ADF test
## 
## data:  mer$LL_N
## ADF(0) = -1.3079, p-value = 0.606
## alternative hypothesis: true delta is less than 0
## sample estimates:
##     delta 
## -0.161773
CADFtest(mer$LN2029_N, type="drift", max.lag.y=4, criterion="MAIC")
## 
##  ADF test
## 
## data:  mer$LN2029_N
## ADF(2) = 0.31553, p-value = 0.9733
## alternative hypothesis: true delta is less than 0
## sample estimates:
##      delta 
## 0.02679662

どちらもなし

CADFtest(mer$LK2_N, type="none", max.lag.y=4, criterion="MAIC")
## 
##  ADF test
## 
## data:  mer$LK2_N
## ADF(0) = -3.0626, p-value = 0.003976
## alternative hypothesis: true delta is less than 0
## sample estimates:
##       delta 
## -0.04693691
CADFtest(mer$LCm_K2, type="none", max.lag.y=4, criterion="MAIC")
## 
##  ADF test
## 
## data:  mer$LCm_K2
## ADF(1) = 0.3169, p-value = 0.7678
## alternative hypothesis: true delta is less than 0
## sample estimates:
##       delta 
## 0.008801401
CADFtest(mer$LX_Cm_1, type="none", max.lag.y=4, criterion="MAIC")
## 
##  ADF test
## 
## data:  mer$LX_Cm_1
## ADF(1) = 0.1227, p-value = 0.7108
## alternative hypothesis: true delta is less than 0
## sample estimates:
##       delta 
## 0.006446368
CADFtest(mer$LU_L, type="none", max.lag.y=4, criterion="MAIC")
## 
##  ADF test
## 
## data:  mer$LU_L
## ADF(0) = 0.86978, p-value = 0.89
## alternative hypothesis: true delta is less than 0
## sample estimates:
##      delta 
## 0.04205687
CADFtest(mer$LGm_N, type="none", max.lag.y=4, criterion="MAIC")
## 
##  ADF test
## 
## data:  mer$LGm_N
## ADF(3) = 0.43477, p-value = 0.7989
## alternative hypothesis: true delta is less than 0
## sample estimates:
##       delta 
## 0.001118678
CADFtest(mer$LDGm_N, type="none", max.lag.y=4, criterion="MAIC")
## 
##  ADF test
## 
## data:  mer$LDGm_N
## ADF(2) = -1.3289, p-value = 0.1641
## alternative hypothesis: true delta is less than 0
## sample estimates:
##      delta 
## -0.1341785
CADFtest(mer$LL_N, type="none", max.lag.y=4, criterion="MAIC")
## 
##  ADF test
## 
## data:  mer$LL_N
## ADF(0) = -0.16694, p-value = 0.614
## alternative hypothesis: true delta is less than 0
## sample estimates:
##         delta 
## -0.0004205504
CADFtest(mer$LN2029_N, type="none", max.lag.y=4, criterion="MAIC")
## 
##  ADF test
## 
## data:  mer$LN2029_N
## ADF(1) = 1.0092, p-value = 0.9114
## alternative hypothesis: true delta is less than 0
## sample estimates:
##       delta 
## 0.002497968

表3-10 Merriman(1988)の再現データのKPSS検定 (p.363)

トレンドと定数項

library(urca)
summary(ur.kpss(mer$LK2_N,type="tau",lags="short"))
## 
## ####################### 
## # KPSS Unit Root Test # 
## ####################### 
## 
## Test is of type: tau with 2 lags. 
## 
## Value of test-statistic is: 0.088 
## 
## Critical value for a significance level of: 
##                 10pct  5pct 2.5pct  1pct
## critical values 0.119 0.146  0.176 0.216
summary(ur.kpss(mer$LCm_K2,type="tau",lags="short"))
## 
## ####################### 
## # KPSS Unit Root Test # 
## ####################### 
## 
## Test is of type: tau with 2 lags. 
## 
## Value of test-statistic is: 0.0884 
## 
## Critical value for a significance level of: 
##                 10pct  5pct 2.5pct  1pct
## critical values 0.119 0.146  0.176 0.216
summary(ur.kpss(mer$LX_Cm_1,type="tau",lags="short"))
## 
## ####################### 
## # KPSS Unit Root Test # 
## ####################### 
## 
## Test is of type: tau with 2 lags. 
## 
## Value of test-statistic is: 0.1017 
## 
## Critical value for a significance level of: 
##                 10pct  5pct 2.5pct  1pct
## critical values 0.119 0.146  0.176 0.216
summary(ur.kpss(mer$LU_L,type="tau",lags="short"))
## 
## ####################### 
## # KPSS Unit Root Test # 
## ####################### 
## 
## Test is of type: tau with 2 lags. 
## 
## Value of test-statistic is: 0.2218 
## 
## Critical value for a significance level of: 
##                 10pct  5pct 2.5pct  1pct
## critical values 0.119 0.146  0.176 0.216
summary(ur.kpss(mer$LGm_N,type="tau",lags="short"))
## 
## ####################### 
## # KPSS Unit Root Test # 
## ####################### 
## 
## Test is of type: tau with 2 lags. 
## 
## Value of test-statistic is: 0.2408 
## 
## Critical value for a significance level of: 
##                 10pct  5pct 2.5pct  1pct
## critical values 0.119 0.146  0.176 0.216
summary(ur.kpss(mer$LDGm_N,type="tau",lags="short"))
## 
## ####################### 
## # KPSS Unit Root Test # 
## ####################### 
## 
## Test is of type: tau with 2 lags. 
## 
## Value of test-statistic is: 0.0933 
## 
## Critical value for a significance level of: 
##                 10pct  5pct 2.5pct  1pct
## critical values 0.119 0.146  0.176 0.216
summary(ur.kpss(mer$LL_N,type="tau",lags="short"))
## 
## ####################### 
## # KPSS Unit Root Test # 
## ####################### 
## 
## Test is of type: tau with 2 lags. 
## 
## Value of test-statistic is: 0.1704 
## 
## Critical value for a significance level of: 
##                 10pct  5pct 2.5pct  1pct
## critical values 0.119 0.146  0.176 0.216
summary(ur.kpss(mer$LN2029_N,type="tau",lags="short"))
## 
## ####################### 
## # KPSS Unit Root Test # 
## ####################### 
## 
## Test is of type: tau with 2 lags. 
## 
## Value of test-statistic is: 0.2107 
## 
## Critical value for a significance level of: 
##                 10pct  5pct 2.5pct  1pct
## critical values 0.119 0.146  0.176 0.216

定数項

summary(ur.kpss(mer$LK2_N,type="mu",lags="short"))
## 
## ####################### 
## # KPSS Unit Root Test # 
## ####################### 
## 
## Test is of type: mu with 2 lags. 
## 
## Value of test-statistic is: 0.9291 
## 
## Critical value for a significance level of: 
##                 10pct  5pct 2.5pct  1pct
## critical values 0.347 0.463  0.574 0.739
summary(ur.kpss(mer$LCm_K2,type="mu",lags="short"))
## 
## ####################### 
## # KPSS Unit Root Test # 
## ####################### 
## 
## Test is of type: mu with 2 lags. 
## 
## Value of test-statistic is: 0.5277 
## 
## Critical value for a significance level of: 
##                 10pct  5pct 2.5pct  1pct
## critical values 0.347 0.463  0.574 0.739
summary(ur.kpss(mer$LX_Cm_1,type="mu",lags="short"))
## 
## ####################### 
## # KPSS Unit Root Test # 
## ####################### 
## 
## Test is of type: mu with 2 lags. 
## 
## Value of test-statistic is: 0.4088 
## 
## Critical value for a significance level of: 
##                 10pct  5pct 2.5pct  1pct
## critical values 0.347 0.463  0.574 0.739
summary(ur.kpss(mer$LU_L,type="mu",lags="short"))
## 
## ####################### 
## # KPSS Unit Root Test # 
## ####################### 
## 
## Test is of type: mu with 2 lags. 
## 
## Value of test-statistic is: 0.3477 
## 
## Critical value for a significance level of: 
##                 10pct  5pct 2.5pct  1pct
## critical values 0.347 0.463  0.574 0.739
summary(ur.kpss(mer$LGm_N,type="mu",lags="short"))
## 
## ####################### 
## # KPSS Unit Root Test # 
## ####################### 
## 
## Test is of type: mu with 2 lags. 
## 
## Value of test-statistic is: 0.9305 
## 
## Critical value for a significance level of: 
##                 10pct  5pct 2.5pct  1pct
## critical values 0.347 0.463  0.574 0.739
summary(ur.kpss(mer$LDGm_N,type="mu",lags="short"))
## 
## ####################### 
## # KPSS Unit Root Test # 
## ####################### 
## 
## Test is of type: mu with 2 lags. 
## 
## Value of test-statistic is: 0.6243 
## 
## Critical value for a significance level of: 
##                 10pct  5pct 2.5pct  1pct
## critical values 0.347 0.463  0.574 0.739
summary(ur.kpss(mer$LL_N,type="mu",lags="short"))
## 
## ####################### 
## # KPSS Unit Root Test # 
## ####################### 
## 
## Test is of type: mu with 2 lags. 
## 
## Value of test-statistic is: 0.1727 
## 
## Critical value for a significance level of: 
##                 10pct  5pct 2.5pct  1pct
## critical values 0.347 0.463  0.574 0.739
summary(ur.kpss(mer$LN2029_N,type="mu",lags="short"))
## 
## ####################### 
## # KPSS Unit Root Test # 
## ####################### 
## 
## Test is of type: mu with 2 lags. 
## 
## Value of test-statistic is: 0.5232 
## 
## Critical value for a significance level of: 
##                 10pct  5pct 2.5pct  1pct
## critical values 0.347 0.463  0.574 0.739